
The NSG Program - Pixelated Reverie
Tech Design Document

Contents

Introduction Page 1

Figures Page i

System Scripts Page 6

Character Movement and Mechanics Page 20
Page 20

Page 32

Page 37

Page 38

Page 41

Page 43

Page 45

Page 49

Page 55

Page 59

Page 62

Page 1

Page 1

Page 6

Page 7

Page 8

Page 14

Page 17

Page 19

Game Idea

Gameplay Segments

Atari Ability Save

Store Class and Store Transform

GenreSwap

CornerTrigger

EventsCode

Menu

DecalMovement

Mega_Man_Movement

Zelda_Movement

Rock_Trigger, AddGravity and RockWallCheck

Pollen and SwordDestroy

DecalTrigger and DecalDeath

FPS_Movement

FPS_Camera and CameraRaycast

RockThrow and RockHit

FlowerShoot, pollencollision and TeleportPlant

GiveRockAbility3D and SwapThrow

Dialogue, Timelines and Voice Acting Page 63
Page 66

Page 67

Page 70

Dialogue and TriggerDialogue

Dialogue_Manager

TimelineManager and StartTimeline

Segment 2 - Introduction To Inventory: Page 103

Segment 1 - Introduction to Game Page 95

Segment 4 - Floor Platforming Page 115
Page 115

Page 117

Page 95

Page 97

Page 98

Page 103

Page 105

Projector

Examine_Point

AtariAbilityTrigger and DestroyTrigger

DecalTextAppear

MovingPlatform2D

SettingGravity

HoldPlatforms

Page 73

Page 76

Page 78

Notes and NoteParent

VoiceActing and VoiceActingManager

RandomWait and audiomanager

Page 83

Page 86

Page 90

ItemClass and Inventory

ButtonInstance, InventoryElement and ButtonLocation:

ItemPickup, mouseclick and Vine:

Inventory and UI Page 83

Page 108

Page 114

Switch and SwitchTrigger

GiveRock

Segment 3 - 2D Rock Puzzle Introduction Page 108

Page 120

Page 122

RockTriggerBool

TriggerAnim

Segment 5 - Boulder Chaser: Page 120

Page 124

Page 126

Page 128

Page 129

Page 131

WaterBlock

Spring

Switch3D

plantgrow

spikevine

Segment 7 - Optional Area and Mega Man Introduction: Page 124

Segement 10 - Final Segment: Page 136

SwapCharacter
 Page 136

Segment 8 and 9 - Flower Gun Puzzle and Spring Vine Puzzle: Page 133

Page 133

Page 135

SwapSprings

FPSTrigger

Page 132PollenUI

Figures:

Figures 1 - Segment 6 (Page 4) - A Screenshot of the game’s sixth
gameplay segment, which doesn’t introduce any new mechanics or scripts.

Figures 2 - Segment 1 (Page 95) - A screenshot of the game’s first
gameplay segment.

Figures 3 - Segment 2 (Page 103) - A screenshot of the game’s second
gameplay segment.

Figures 4 - Segment 3 (Page 108) - A screenshot of the game’s third
gameplay segment.

Figures 5 - Segment 4 (Page 115) - A screenshot of the game’s fourth
gameplay segment.

Figures 6 - Segment 5 (Page 120) - A screenshot of the game’s fifth
gameplay segment.

Figures 7 - Segment 7, Optional Area (Page 124) - A screenshot of the
optional area within the 7th segment of the game.

Figures 8 - Segment 7, Mega Man Intro (Page 128) - A screenshot of the
Mega Man introduction segment found in Segment 7.

Figures 9 - Segment 8 (Page 133) - A screenshot of the game’s eight
segment of gameplay.

Figures 10 - Segment 9 (Page 134) - A screenshot of the game’s ninth area
of gameplay.

Figures 11 - Segment 10 (Page 136) - A screenshot of the game’s tenth
area of gameplay.

i

Introduction:
Welcome to the Tech Design Document for the NSG Program - Pixelated Reverie my
third year Final Major Project on the BSC Games Technology course at the University
for the Creative Arts. This project began Pre-Production in September 2023, followed

by Production in January 2024. This project was a passion project of mine which I
intend to pitch towards the University’s Incubator Studio upon my graduation, as I have
a full plan for the game as a complete title. This was a solo project created within Unity,

with version 2022.3.0f1 using the High Definition Render Pipeline. This document will
contain descriptions for each of the scripts written for this game, explaining their
functions within the game and how they tie together. Each script will discuss the

variables and functions that make them up. This introductory segment will explain the
concept of the game, before beginning the journey into technical jargon.

The NSG Program - Pixelated Reverie is a hybrid between first-person puzzle games
and 2D platforming games. The game has the player explore a digital world made of
surreal visuals as they swap between 3D and 2D perspectives and gain new abilities.

This game will contain a mix of different ideas which are explored to create interesting
puzzle scenarios for the player to explore. The game will be a heavily narrative based
experience, exploring a plot of nostalgia as a form of escapism in the face of serious

topics, and will be designed to draw the player in with fun mechanics and visuals only
to slowly unearth the dark atmosphere beneath the surface. The project this year will

all exist within one main environment, a large Cliffside overrun with a giant flower,
though the full game idea that will be pitched to the Incubator studio will contain six

different areas, which will hopefully be released in different chapters.

The NSG Program is played within one large environment, which intersects with itself.
This environment contains several different puzzles, both in the 3D and 2D spaces,

which I separated as different segments during development. Each segment contains a
puzzle for the the player to play, with many serving as introductions to mechanics.

Detailed below is a list of each segment, in order, and what mechanics are introduced
for the unique areas. These mechanics often add to the mechanics previously

established in the system and player movement scripts, and are used to give variety to
the gameplay. The listing of the mechanics within this segment will also serve as the

order that they will be discussed within this document, with each script being
examined in order of appearance. So, without further ado, the segments with the game

are as follows:

Game Idea:

Gameplay Segments:

1

Segment 1 - Introduction To Game:

Segment 2 - Introduction To Inventory:

Segment 3 - 2D Rock Puzzle Introduction:

Mechanics Established in Segment 1:

Mechanics Established in Segment 2:

This first segment serves as the start of the game. The player finds themselves in a
enclosed area with a cliff behind them. The gate ahead is blocked by a gate, forcing the
player to interact with the first decal crack, which takes them into the first 2D section
of gameplay. Since this is the introduction to the game itself, it does not introduce too

many unique mechanics past the basic game systems.

The second segment of the game introduces the player to the inventory system in the
game. This system is complicated enough to have it’s own section discussing it, but

aside from the Inventory, this area also introduces a new feature in the Projector, which
is used to help plan within the 2D space. This area also originally had the player change

camera angles to place items down from the Inventory, which ended up being
scrapped.

Access to Atari Jump - This segment houses a trigger which activates the Atari Jump
ability stored in AtartAbilitySave. Script - AtariAbilityTrigger

Decal Text Appear - This segment introduces triggers that cause decal text to fade
onto the walls. Script - DecalTextAppear

Destroyable Objects - This Segment houses a 3D object which gets destroyed when
the player passes a trigger. Script - DestroyTrigger

Moving Platforms - This Segment introduces the moving platform obstacles found
throughout the game. Script - MovingPlatform2D

Projectors - This segment introduces the projector items that reveal the 2D platforms
within the 3D space, and are used throughout the game. Script - Projector.

Unused Script - This script was cut from the game, but originally worked to change the
camera angle so that the player can place down items from their inventory. Script -

Examine_Point.

This segment of the game is directly after the player walks through the game’s hub
area, and introduces the 2D rock ability. This ability is explored further in the section

discussing the rock abilities, the script also introduces the use of Timelines for
dialogue, though this is also discussed in the Dialogue section of the document. Aside

from these, the main thing introduced in this segment are the switch and gate
mechanics, which are used throughout the game.

2

Mechanics Established in Segment 3:
Switches and Gates - the switch and gate system is used throughout the game. As the

game progresses the switch ends up being used for more mechanics, such as
HoldPlatforms and to change the end position of moving platforms. Scripts - Switch

and SwitchTrigger.

Mechanics Established in Segment 4:

Mechanics Established in Segment 5:

Changing Scene Gravity - This area creates a script that can adjust the direction of the
scene’s gravity so that the player can play on the floor. This is the only scene that

requires this however. Script - ChangeGravity.

Hold Platforms - This variety of platform is used throughout the game, and only moves
when a corresponding switch has been pressed. Script - HoldPlatforms.

Death When Leaving the Boulder - For the challenge to work, the player needs to die
when not keeping up with the boulder, which works well. Script - RockTriggerBool.

Respawning Boulder - An issue that occured when testing out this segment was in
regards to the animation of the boulder, which the player needed to wait for before

being able to continue the scene, I counteracted this by having the boulder respawn
when the player nears it, so that they no longer have to wait. Script - TriggerAnim.

Segment 4 - Floor Platforming:

Segment 5 - Boulder Chaser:

Segment 6 - Leaf Level:

This section follows the introduction of the 3D Rock ability, and requires the player to
knock over a vine to change the path in the 2D space. This area introduces two new
scripts and mechanics to the game, the first of which being the ability to change the

gravity of the scene. This script is needed for the 2D sections to be positioned on the
floor, in order to stop the player from falling through the ground. This area also

introduces the HoldPlatforms, a variation on the Moving Platforms that only move when
the player presses the switch.

The 5th segment of the game has the player platform on a moving boulder, which
reveals platforms as it moves. If the player leaves the confines of the boulder then they
die and need to restart the challenge. This area mostly used mechanics established in

prior areas, but added some more scripts to make the boulder chasing work.

The 6th segment of the game was designed to be a culmination of every mechanic set
up in the prior section of the game. As such, this segment doesn’t introduce any new

mechanics or systems, and was designed more to showcase the level design potential
of the mechanics previously added. This segment has the player knock over a leaf with

their rock in order to make the path forward, and uses all mechanics from Hold
Platforms to switches and gates. I think this works quite well as a culmination, but didn’t

introduce anything new.

3

Figure 1 - Segment 6

Segment 7 - Optional Area and Mega Man Introduction:
After the culmination of mechanics that was Segment 6, Segment 7 is mainly there to
set up the next 2D Gameplay style, being the Mega Man style of gameplay. Because of
this, the segment is filled with new mechanics unique to that style of gameplay, which

works quite well. In addition, this segment has an optional area of gameplay that serves
to be it’s own unique platforming challenge that the player can experience just for fun.

This optional area has the player need to use the 3D rock ability to block a leak of
water, which then effects the 2D section in turn.

Mechanics Established in Segment 7:
Water Leak - In the optional area, the player needs to block a leak of water in the wall to

change the platforms in the 2D area. Script - WaterBlock.

Springs - The optional area introduces springs which increase the height of the player’s
jump when triggered with. These are used later in the game to bounce off the pollen

shot by the Mega Man Character. Script - Spring.

3D Switches - The 7th segment introduces switches in the 3D space, which when
pressed open up gates in the 3D area. Script - Switch3D.

2D Vines and Thorns - The introduction to the Mega Man player introduces 2D vines
and thorny spikes which the player can grow and shrink using their shot pollen. Scripts

- plantgrow and spikevine.

PollenUI - To help the player understand what type of pollen they are shooting, a new
bit of UI is set up in this area that shows the current UI to be shot.

4

Segment 8 - 3D Flower Gun Puzzles:

Segment 9 - Spring Vine Puzzle:

Segment 10 - Final Segment:

The eight segment of the game houses two 2D platforming sections, both introducing
new elements accessed via the 3D flower gun ability. These puzzles are short and

simple require the player needing to shoot vines with their 3D pollen to change the size
of the pollen. The first of the 2D sections is a redo of the second segment, with the

player increasing the size of the vines using the pollen rather then placing them down
as inventory items. The second is a puzzle with springs that change positions based on
the size of the vines grown. These springs ended up using the Vines script made for the

inventory items, but before that there was a script made for it called SwapSprings,
which ended up being obsolete.

The ninth section of the game involved the player solving one giant spring puzzle, where
the player needs to grow the vines in order to make a path for the spring to hit a switch.

This was originally the first instance of this type of puzzle, but proved to be too
complicated to be a good introduction, so instead I moved it back and create a simpler

version in Segment 8. This area introduces moving platforms in the 3D space, which
required new code to the 3D player’s movement, which will be explained in this script.

The 10th segment of the game serves as the final one, and is a big finale to the game,
incorporating every mechanic previously established, from the Inventory system to 3D
buttons and the rock hit ability. To properly incorporate everything however, I needed

to create a new system, I needed to create a means for the player to swap between 2D
gameplay styles on the fly, so that every mechanic could be properly incorporated.

Mechanics Established in Segment 8:

Mechanics Established in Segment 9:

Mechanics Established in Segment 10:

Swapping Spring Position - This was done with the Vines script, though had a unused
script that was originally used for this. Script - SwapSprings.

3D Moving Platforms - These 3D Moving platforms are used to help the player see
things in different angles, and used the MovingPlatform2D script for this, but needed a
new trigger for the 3D player to keep them parented to the object. Script - FPSTrigger.

2D Gameplay Swap - The final area had a trigger that when entered would swap the 2D
gameplay style over on the other side of the trigger, doing this required a new script

just for it. Script - SwapCharacter.

5

System Scripts:
This section of the document focuses on scripts that are more in the background,
working to keep the game running smoothly This will also include scriptable objects
created for use in the game store values across the play experience. Finally, this

section will also discuss elements used for debugging that were useful for the overall
development cycle. So, let’s begin looking at these scripts.

AtariAbilitySave:
The Atari Ability Save script is a scriptable object used to store information on what
abilities the player has unlocked in the game. The script is quite short, serving it’s

purpose as a scriptable object well, being stored as a item within the project files. The
script is named this way as it was originally used to store the abilities of the 2D Atari

gameplay style, rather then every gameplay style.

This script contains only three variables, all of which are bools. They are as follows: 

AtariJump (bool) - This bool determines when the player has unlocked the ability to
jump as the 2D Atari character.

AtariRock (bool) - This bool determines when the player has unlocked the ability to
place rocks as the 2D Atari character.

tDRock (bool) - This bool determines whether the 3D player has unlocked the ability to
throw rocks.

FlowerGun (bool) - This bool determines whether the 3D player has unlocked the
flower gun ability.

This script, being made to work as a object in the project files, was made to be as
simple as possible, with only one function. This function is the void Awake(), which is
automatically called at the start of the game. This function stores all the previously
mentioned bools to be false, so that the player has to unlock them as the game

progresses.

AtariAbilitySave - Variables and Awake():
[(= , = , =)]

 :
{

 , , ;

 ()

 {

 = ;

 = ;

 = ;

 = ;

 }

}

CreateAssetMenu

Awake

menuName order fileName
public

bool AtariJump AtariRock tDRock, FlowerGun

AtariJump
AtariRock
tDRock

 FlowerGun

"AtariSave" "Atari Save"2
class

public
void

false
false

false
false

AtariAblilitySave ScriptableObject

//This is the scriptable object which stores the bools which allow the player to use the different abilities.

//These abilities include the 2D players jump and rock placing, and the 3D players rock throw and flower gun.

//Each of the bools are set to false upon the game initialy beginning.

6

StoreClass and StoreTransform:
These two scripts are placed together, as the two are innately linked, and are quite
short. Store Class is a class script, meaning it only exists to be used as a variable in
other scripts. This variable created from the class is then used in Store Transform, a
scriptable object used for debugging purposes. These scripts were made to make the
process of keeping track of the values needed to rotate around corners easier, like a

notebook stored as a object in the project files. Without the system created from these
scripts, the process of adding corner rotations to the 2D section would be much more

annoying.

Store Class:

Store Transform:

This script creates a class that incorporates several different variables, which are used
to create a list of the values needed for corner rotations: 

Name (string) - This string is used to store a name for the collection of variables, so
that it is more clear what each element is used for.

Pos (Vector 3) - This Vector 3 is used to store the position data of an object that can
be copied later.

Rot (Quaternion) - This Quaternion is used to store the rotation data of an object that
can be copied later.

Scale (Vector 3) - This Vector 3 is used to store the scale data of an object that can be
copied later.

Norm (Vector 3) - This Vector 3 is used to store the normal of an object that can be
copied later.

FOV (float) - This float stores the Frame of View of Camera components that can be
copied later.

[(= , = , =)]

 :

{

 [] ;

}

CreateAssetMenu menuName order fileName
public

StoreClass Save

"TransformSave" "Store Transform"3
class

public

StoreTranform ScriptableObject

//This is a scriptable object used to easily copy and paste the Tranforms of objects in the game.

This script is only used to create a scriptable object which stores an array of variables
under the StoreClass class. This is then used to take note of Transform data of objects
and compile them all in one easy to copy list. This is a life saver and something I’m glad

to have created, even if it seems very small.

[System.Serializable]

public
{

 string ;

 Vector3 ;

 Quaternion ;

 Vector3 ;

 Vector3 ;

 float ;

}

//This is a class used to store the values needed for corner rotations in the 2D space.

class

public
public
public
public
public
public

StoreClass

Name
Pos

Rot
Scale
Norm

FOV

7

GenreSwap:
This script is one of the most important in the entire game, being the key to swapping
between the 2D and 3D gameplay styles. This is done either with the 3D player using a
raycast to collide with it, or for 2D player to enter it’s trigger. This is done in the game
using decal cracks which appear on the walls. So, without further a do, let’s look at the

script’s variables.

GenreSwap - Variables:
public :

{

 [SerializeField] DecalMovement ;

 [SerializeField] Mega_Man_Movement ;

 [SerializeField] Animator ;

 [SerializeField] GameObject[] ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject , , , , , , , ;

 [SerializeField] GameObject ;

 [SerializeField] Vector3 , ;

 [SerializeField] Vector3 ;

 [SerializeField] Quaternion ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 [SerializeField] TriggerDialogue ;

 [SerializeField] Dialogue_Manager ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 [SerializeField] CameraRaycast ;

 [SerializeField] DecalProjector ;

 [SerializeField] GameObject ;

 [SerializeField] string ;

 [SerializeField] SettingGravity ;

 [SerializeField] bool ;

 [SerializeField] Vector3 ;

 [SerializeField] Quaternion ;

 [SerializeField] GameObject ;

 [SerializeField] audiomanager ;

 [SerializeField] GameObject ;

 [SerializeField] PollenUI ;

 [SerializeField] Projector ;

 [SerializeField] bool ;

 [SerializeField] VoiceActing ;

class GenreSwap MonoBehaviour

//This is the script that is used to swap the player between the 2D and 3D states.

//These GameObjects store the movement for the different gameplay styles.

//This stores the Fade animator when swapping the 2D styles.

//These store the variables needed for the different gameplay swaps, such as the markers the player will be moving between, the player and the cracks that are used for the

 transition

//These store the position and normal the 2D player will start at.

//This stores position and rotation the 3D player will start at.

//This bool is used to check if the crack is swapping between the 2D or 3D gameplay

//This bool is set to true as the swap is being set up

//This bool is true when the player needs to start in their natural position

//This stores a Dialogue instance that could play at the start of the 2D segment set up

//This stores the Dialogue_Manager script

//This stores the Press E UI pop up

//This stores the Inventory UI

//This stores the 3D player's CameraRaycast script

//This stores the DecalProject projection the script's instance's crack

//This stores the Cross Hair appearing in the centre screen.

//If the area needs to change the scene's gravity then it changes it using the SettingGravity script, based on the value of GravityChange.

//This stores the positing and rotating that the 2D camera will need to be in at the start of play, if the SetCamera bool is true.

//This stores the audiomanager script

//This stores the 2D rock used in the 2D area

//This stores the PollenUI that appears with the Mega_Man Player

//This stores the Projector item that may be projecting the 2D scene

//When this bool is true, it means the 2D player spawned is the Mega_Man.

//This stores a voice line that can play before or after the transition

DM

MMM

Fade

Markers

MainPlayer

Crack1 Crack2 TwoDCrack1 TwoDCrack2 Crack1Trigger Crack2Trigger TwoDCrack1Trigger TwoDCrack2Trigger

DecalArea

newnormal newpos

PlayerPos

PlayerRot

TwoDorThreeD

SettingUp

NaturalPos

TD

DI_M

PressE

InventoryItem

CR

DP

Cursor

GravityChange

SG

SetCamera

CameraPos

CameraRot

FlatCamera

AM

Rock

pollenui

P

StartMegaMan

VA

8

This script has a lot of variables, as it stores the information needed when swapping
between the two gameplay styles, the variables needed are as follows:

DM and MMM (DecalMovement and Mega_Man_Movement) - These variables are
used to store the scripts for the 2D player characters, for either gameplay style.

Fade (Animator) - This stores the animation of the fade that goes on screen whilst the
gameplay styles change.

Markers[], MainPlayer, Crack1, Crack2, TwoDCrack1, TwoDCrack2, Crack1Trigger,
Crack2Trigger, TwoDCrack1Trigger, TwoDCrack2Trigger, DecalArea (GameObject) -

These GameObjects are used when swapping between the 2D and 3D gameplay styles,
storing the Markers the player moves between, the 3D Player, the different cracks in

both the 3D and 2D space, and the 2D Area itself.

newnormal, newpos (Vector3) - This stores the position and normal that the 2D player
is spawned out.

PlayerPos and PlayerRot (Vector3 and Quaternion) - These store the position and
rotation that the 3D player should spawn from.

TwoDorThreeD, SettingUp and NaturalPos (bool) - These bools are needed to check
how the script is setting up the gameplay. TwoDorThreeD is used to check if the game
is swapping to the 2D gameplay style, or 3D style. SettingUp is called when the script

begins setting up the gameplay swap and NaturalPos decides whether the player
activated should be in their current position or the position values set in the script.

TD, DI_M, PressE, InventoryItem, CR, Cursor (TriggerDialogue, Dialogue_Manager,
GameObject, CameraRaycast) - These store different scripts and objects needed for
the script. TD stores a dialogue instance that can appear at the start of the 2D space,

with DI_M storing the Dialogue_Manager script. PressE and InventroyItem store UI
elements, with PressE being the Press E pop-up and InventoryItem storing the

Inventory UI. CR stores the CameraRaycast script and Cursor stores the cross hair in
the centre of the screen.

DP (DecalProjector) - This stores the DecalProjector of the current 2D crack.

GravityChange and SG (string and SettingGravity) - These store variables used when
the 2D space requires a different form of gravity. It changes the direction of gravity by

using the string value stored in GravityChange.

SetCamera, CameraPos, CameraRot and FlatCamera (bool, Vector3, Quaternion and
GameObject) - These store variables needed to set up the 2D camera in the scene, if it

is in a unique position at the start of the section.

9

AM (audiomanager) - This stores the audiomanager script used on the corner.

Rock (GameObject) - This stores the rock gameObject used in the Atari gameplay
styles.

pollenui (PollenUI) - This stores the Pollen UI which appears with the Mega Man Player.

P (Projector) - This stores the Projector which can turn on the 2D Decals.

StartMegaMan (bool) - When this bool is true then the 2D player will be the Mega Man
Player.

VA (VoiceActing) - This stores the voice acting clip which can play before or after the
transition.

GenreSwap - Start(), Update() and Triggers:

 private ()

 {

 GameObject. (). < >();

 }

 private ()

 {

 (TwoDorThreeD)

 {

 (.material .Cracks[])

 {

 (Input. (KeyCode.))

 {

 (SettingUp)

 {

 PressE. ();

 .Crack. ();

 SettingUp ;

 (TwoDorThreeD)

 {

 :

 {

 (());

 }

 ;

 :

 {

 (());

 }

 ;

 }

 }

 }

 }

 }

 }

 private (Collider other)

 {

 (TwoDorThreeD)

 {

 (other.gameObject.tag)

 {

 PressE. ();

 }

 }

 }

//The Start() function stores the value of AM.

//The Update() function checks if the player has highlighted the 3D crack, and if so waits for them to press E so it can set up the 2D scene

//When entering the Trigger Press E is set to true.

void

=

void

if ==

if ==

if

if ==

=
switch

case

break
case

break

void

if ==

if ==

Start

FindGameObjectWithTag GetComponent audiomanager

Update

GetKey

SetActive
SetActive

StartCoroutine Setup2D

StartCoroutine Setup3D

OnTriggerEnter

SetActive

AM

true

DP CR 1

E

false

false
AM true

true

true

false

false

true

"AControl"

"Player"

10

 private (Collider other)

 {

 (TwoDorThreeD)

 {

 (other.gameObject.tag)

 {

 (Input. (KeyCode.))

 {

 (SettingUp)

 {

 PressE. ();

 SettingUp ;

 .Crack. ();

 (TwoDorThreeD)

 {

 :

 {

 (());

 }

 ;

 :

 {

 (());

 }

 ;

 }

 }

 }

 }

 }

 }

 private (Collider other)

 {

 PressE. ();

 }

//This script will allow the player to swap between the 3D or 2D space when pressing E.

//When exiting the trigger PressE is set to false.

void

if ==

if ==

if

if ==

=

switch

case

break
case

break

void

OnTriggerStay

GetKey

SetActive

SetActive

StartCoroutine Setup2D

StartCoroutine Setup3D

OnTriggerExit

SetActive

false

E

false

false
true

AM true

true

false

false

"Player"

The Start() function for this script is used to store the audiomanager, which is stored in AM. The Update() function checks
whether the player is highlighting the crack entrance, and if they are and press E, then either the 2D or 3D space will be
swap into. When entering or exiting the trigger of the object the Press E UI pop-up will either be activated or deactivated.

The OnTriggerStay() function is set up the gameplay transition swap, much like the Update() function. Typically, the
Update() function is used for the 3D interactions, and the 2D space is used for the Trigger functions.

GenreSwap - Setup2D():

 public IEnumerator ()

 {

 .Set2D ;

 Cursor. ();

 .material .Cracks[];

 ()

 {

 . ();

 }

 Fade. (,);

 InventoryItem. ();

 ()

 {

 . ();

 }

 ()

 {

 . ();

 }

 (0.4f);

 MainPlayer. ();

 Crack1. ();

 Crack2. ();

 DecalArea. ();

 (TwoDCrack1.activeSelf)

 {

//Sets up the swap from the 3D gameplay to the 2D gameplay.

Setup2D

SetActive

AddLine

SetBool
SetActive

LetMove

LetMove

WaitForSeconds

SetActive
SetActive
SetActive

SetActive

CR true
false

DP CR 0
VA null

VA

true
false

DM null

DM false

MMM null

MMM false

false
false
false

true
true

=

=
if !=

if !=

if !=

yield return new

if ==

"Fade"

11

 TwoDCrack1Trigger. ();

 }

 TwoDCrack2Trigger. ();

 (StartMegaMan)

 {

 .gameObject. ();

 .OriginMark Markers[];

 .TargetMark Markers[];

 . (NaturalPos, newnormal, newpos);

 }

 (StartMegaMan)

 {

 .gameObject. ();

 .OriginMark Markers[];

 .TargetMark Markers[];

 . (NaturalPos, newnormal, newpos);

 }

 (SetCamera)

 {

 FlatCamera.transform.localPosition CameraPos;

 FlatCamera.transform.localRotation CameraRot;

 }

 ()

 {

 . (GravityChange);

 ()

 {

 .transform.rotation PlayerRot;

 }

 ()

 {

 .transform.rotation PlayerRot;

 }

 }

 (FlatCamera)

 {

 FlatCamera. ();

 }

 (1f);

 Fade. (,);

 ()

 {

 pollenui.gameObject. ();

 pollenui. ;

 }

 (0.4f);

 (.gameObject.activeSelf)

 {

 ()

 {

 . ();

 }

 ()

 {

 . ();

 }

 }

 {

 ()

 {

 . ;

 . (.);

 .gameObject. ();

 }

 ()

 {

 . ;

 . (.);

 .gameObject. ();

 }

 }

 SettingUp ;

 gameObject. ();

 }

SetActive

SetActive

SetActive

SetStart

SetActive

SetStart

GravityChange

SetActive

WaitForSeconds

SetBool

SetActive

WaitForSeconds

LetMove

LetMove

StartDialogue
SetActive

StartDialogue
SetActive

SetActive

true

true

DM null false

DM true
DM 0
DM 1
DM

MMM null true

MMM true
MMM 0
MMM 1
MMM

true

SG null

SG
DM null

DM

MMM null

MMM

null

true

false

MMM null

true
MMM MMM

TD null TD false

DM null

DM true

MMM null

MMM true

DM null

DI_M DM DM
DI_M TD D
TD false

MMM null

DI_M MMM MMM
DI_M TD D
TD false

false
false

if != && ==

=
=

if != && ==

=
=

if ==

=
=

if !=

if !=

=

if !=

=

if !=

yield return new

if !=

=

yield return new

if == || ==

if !=

if !=

else

if !=

=

if !=

=

=

"Fade"

12

The Setup2D() IEnumerator is used to swap from the 3D gameplay style to the 2D
gameplay. It starts by having the fade cover the screen, as it deactivates the UI on

screen and stops the selected 2D player from being able to move. After a few seconds
wait, the script deactivates the 3D player and cracks, and activates the 2D player

(whether Atari or Mega Man) and the 2D cracks. If the camera needs to be setup then
the SetCamera bool is set to true, and the camera’s position is set. Next the script

checks if the 2D area needs a different gravity setting, then the SG variable will not be
null, and the new gravity will be set. The function ends by activating the Pollen UI if the
Mega Man player is playable, and any dialogue if it is needed, before activating the 2D
area and removing the fade, so that the player can begin playing. This function is long,
but provides everything necessary for a 2D area to work. It was also refined to be

workable for either type of 2D Gameplay.

GenreSwap - Setup3D():

 public IEnumerator ()

 {

 Fade. (,);

 (0.4f);

 MainPlayer. ();

 Crack1. ();

 Crack2. ();

 Crack2Trigger. ();

 Crack1Trigger. ();

 TwoDCrack1. ();

 MainPlayer.transform.position PlayerPos;

 MainPlayer.transform.rotation PlayerRot;

 ()

 {

 . ();

 .transform.parent ;

 .gameObject. ();

 }

 ()

 {

 . ();

 .transform.parent ;

 .gameObject. ();

 }

 ()

 {

 . ();

 }

 (Rock)

 {

 Rock.transform.parent ;

 Rock. ();

 }

 ()

 {

 pollenui.gameObject. ();

 }

 (FlatCamera)

 {

 FlatCamera. ();

 }

 ()

 {

 .LeftAble ;

 .RightAble ;

 }

 ()

 {

 .LeftAble ;

 .RightAble ;

 }

 (1f);

 .Set2D ;

 Cursor. ();

 InventoryItem. ();

 Fade. (,);

//Sets up the swap from the 2D gameplay to the 3D gameplay

//This functions starts with a fade before deactivating the 2D character and activating the 3D character.

//The function resets every aspects of the 2D players so there are no glitches when entering the 2D area again.

//The function ends by reactivating all the UI and either keeps the 2D area active depending on the Projector.

Setup3D

SetBool
WaitForSeconds

SetActive
SetActive
SetActive

SetActive
SetActive

SetActive

LetMove

SetActive

LetMove

SetActive

GravityChange

SetActive

SetActive

SetActive

WaitForSeconds

SetActive
SetActive

SetBool

"Fade"

"Regular"

"Fade"

true

true
true
true

true
true

true

DM null

DM false
DM null
DM false

MMM null

MMM false
MMM null
MMM false

SG null

SG

null

null
false

MMM null

false

null

false

DM null

DM true
DM true

MMM null

MMM true
MMM true

CR false
true

true
false

yield return new

=
=

if !=

=

if !=

=

if !=

if !=

=

if !=

if !=

if !=

=
=

if !=

=
=

yield return new

=

13

 ()

 {

 . ();

 }

 SettingUp ;

 gameObject. ();

 ()

 {

 DecalArea. ();

 gameObject. ();

 }

 ()

 {

 (.Keepon)

 {

 DecalArea. ();

 gameObject. ();

 }

 }

 (0.4f);

 }

if !=

=

if ==

else if !=

if ==

yield return new

VA null

VA

false
false

P null

false
false

P null

P false

false
false

AddLine

SetActive

SetActive
SetActive

SetActive
SetActive

WaitForSeconds

The Setup3D() IEnumerator does the opposite of the Setup2D() function, being that it deactivates the
2D character and places the 3D character in the spawned location. This function resets every aspect
of the 2D player so that there are no glitches when re-entering the 2D space later. It then activates all
the UI and either turns off the 2D platforms based on whether the Projector is on. This script works

well to tie the gameplay styles together, and is one of the most important in the full script.

The CornerTrigger script is called in the 2D space to set up the 2D player for corner rotations. This is
called CornerTrigger as originally it was called via a trigger collision, but eventually adapted to be
done via distance calculations and not triggers, as it is more consistent and accurate. This script is
designed to store values which are then placed in the 2D Player’s rotation set up. Because of this, the

script has a lot of variables, which are as follows:

CornerTrigger:

CornerTrigger - Variables:
public :
{

 DecalMovement ;

 Mega_Man_Movement ;

 Zelda_Movement ;

 bool ;

 Vector3[] ;

 Vector3 ;

 Vector3[] ;

 Quaternion[] ;

 GameObject[] ;

 float ;

 bool , ;

 Vector3[] ;

 Quaternion[] ;

 float[] ;

 float[] ;

class

public

public

public

public

public
public
public
public

public
public

public
public
public
public

public

CornerTrigger MonoBehaviour

//This script works to setup the corner rotations for the 2D player

//This stores Atari Player for the corner

//This stores the Mega Man Player for the corner

//This sets the Zelda Player for the Corner

//This decides if the rotation is in the X or Y axis

//Stores the values used to calculate the corner rotation

//This stores the different markers for the corner, and the speed at which the platform rotates.

//These store the rotating values of the Camera if needed.

//This checks the how close the player needs to be before they can rotate.

DM

MMM

ZM

XorY

NormalSave
SetNormal

LocationSave
RotationSave

Markers
NewSpeed

CameraB DoBoolOnce
CLocationSave

CRotationSave
CFOVSave

TurnCheck

14

 float ;

 float ;

 bool ;

 [SerializeField] bool ;

 Vector3[] ;

 Vector3[] ;

 Quaternion[] ;

//This stores the distance between theOrigin object and the Target

//This decides if the camera rotation should be done via local or world transforms

//This bool is true when the Atari and Mega Man players are playable in the same 2D space.

//This stores new rotation values for the 2D Mega Man player if that player is found within the same space as an Atari player.

public
public

public

public
public
public

OriginDis
TargetDis

LocalR

TwoObject

SecondNormalSave
SecondLocationSave

SecondRotationSave

This script stores several variables used to set up the corner rotation, which are as
follows:

DM, MMM and ZM (DecalMovement, Mega_Man_Movement and Zelda_Movement) -
These store the different 2D player types, to set them up for the wall rotation.

XorY (bool) - This bool decides if the rotation is in the X or Y axis.

NormalSave[], SetNormal, LocationSave[] and RotationSave[] (Vector3 and
Quaternion) - These store the normal, position and rotation of the player before and

after a corner rotation.

Markers[] and NewSpeed (GameObject, float) - This sets up the markers used to
move on the different walls before and after rotation, and the speed at which the

rotation takes place.

CameraB, DoBoolOnce, CLocationSave[], CRotationSave[] and CFOVSave[] (bool,
Vector3, Quaternion, float) - These variables work to create a rotation change if the
camera needs to change position around a corner like the way the player does. This
only happens if CameraB is true, and will only happen one way if DoBoolOnce is true.

Rather then storing a normal, this stores the Frame Of View of the camera.

TurnCheck[], OriginDis and TargetDis (float) - These floats are used to calculate the
distance the player needs to be from the corner to initiate rotation, with TurnCheck

storing the distance on either side of the corner.

LocalR (bool) - When this bool is true it means the changes to the camera are done in
the local transform, not the world transform.

TwoObject (bool) - When this bool is true it means both the Atari and Mega Man
players are playable in the 2D space, and as such the Mega Man player needs its own

set of rotation values.

SecondNormalSave[], SecondLocationSave[], SecondRotationSave[] (Vector3 and
Quaternion) - These arrays store the values for the Mega Man rotation if both the Atari

and Mega Man players are playable in the 2D space.

15

CornerTrigger - Script:
 public ()

 {

 ()

 {

 (.gameObject.activeSelf)

 {

 .rotationspeed NewSpeed;

 . (LocationSave, NormalSave, RotationSave, Markers);

 (CameraB)

 {

 (DoBoolOnce)

 {

 CameraB ;

 }

 . (CLocationSave, CRotationSave, CFOVSave, LocalR);

 }

 }

 }

 ()

 {

 (.gameObject.activeSelf)

 {

 .rotationspeed NewSpeed;

 (TwoObject)

 {

 . (LocationSave, NormalSave, RotationSave, Markers);

 }

 {

 . (SecondLocationSave, SecondNormalSave, SecondRotationSave, Markers);

 }

 (CameraB)

 {

 (DoBoolOnce)

 {

 CameraB ;

 }

 . (CLocationSave, CRotationSave, CFOVSave);

 }

 }

 }

 ()

 {

 .rotationspeed NewSpeed;

 (XorY)

 {

 :

 {

 . (LocationSave, NormalSave, RotationSave, Markers);

 }

 ;

 :

 {

 . (LocationSave, NormalSave, RotationSave, Markers);

 }

 ;

 }

 }

 }

}

void

if !=

if ==

=

if ==

if ==

=

if !=

if ==

=
if ==

else

if ==

if ==

=

else if !=

=

switch

case

break
case

break

SetupRotate

SetUpRotate

SetUpCameraChange

SetUpRotate

SetUpRotate

SetUpCameraChange

SetUpRotateX

SetUpRotateY

//Checks which script it is setting the script for, and then calls that scripts SetUpRotate Function

//Exclusive to the Zelda game play, the script checks whether the corner is rotating in the x or y
axis.

DM null

DM true

DM
DM

true

true

false

DM

MMM null

MMM true

MMM
false

MMM

MMM

true

true

false

MMM

ZM null

ZM

true

ZM

false

ZM

16

The SetupRotate() script is called by the 2D Movement script and is used to
automatically assign the variables needed for the corner rotation. It does this based on
the type of player interacting with the corner, and strikes that corner’s SetUpRotate()
functions to set up the movement around the corner. If the camera needs to be
rotated, then the 2D player’s SetupCameraChange() function. If both the Atari and

Mega Man players are playable in the same 2D space then the Mega Man player uses
the Second variable storage, rather then the regular type.

The EventsCode script is used to call specific events within the game, which may not
be otherwise possible in the other scripts in the game. It is one long script used to
complete several different purposes, though many of the purposes are quite similar.

For example, a lot of it is used to add decal tutorials to the scene when the player looks
or interact with items.

EventsCode:

EventsCode - Script:
 public :
{

 [SerializeField] GameObject[] ;

 [SerializeField] GameObject[] ;

 [SerializeField] DecalTextAppear[] ;

 [SerializeField] GameObject ;

 bool ;

 [SerializeField] VoiceActing ;

 [SerializeField] VoiceActing ;

 [SerializeField] VoiceActing ;

 ()

 {

 (Application.isEditor)

 {

 Build ;

 }

 {

 Build ;

 }

 WhereamI. ();

 }

 ()

 {

 (Decals[])

 {

 (Projector.gameObject.layer LayerMask. ())

 {

 (Decals[]. ());

 Decals[] ;

 }

 }

class

public

void

if ==

=

else

=

void

if !=

if ==

=

EventsCode MonoBehaviour

Start

AddLine

Update

NameToLayer

StartCoroutine Fadein

//This script is used to complete several different things within the game.

//This stores the Inventory item vines collectable by the player

//This stores the item placement spots for the inventory vines

//This stores every Tutorial decal that appears thanks to this script.

//This stores the first projector of the game, which shows the projector tutorial.

//This bool is set true when the game is played in the build

//These are voice acting clips which are played under certain conditions in the game.

// Start is called before the first frame update

//The start() function checks to see if the game is being played in the build or not

//The Start() function ends by playing the WhereamI line.

// Update is called once per frame

//The Update() function is spent checking to see if the conditions for the tutorial text to appear have been met.

Vines

Planters

Decals

Projector

Build

WhereamI

VineTake

TakeThis

false

true

false

0 null

0
0 null

"ItemSelection"

17

 (Decals[])

 {

 (GameObject Vines)

 {

 (.gameObject.layer LayerMask. ())

 {

 (Decals[]. ());

 Decals[] ;

 }

 }

 }

 int activeI ;

 (Decals[])

 {

 (GameObject Vines)

 {

 (.gameObject.activeSelf)

 {

 activeI ;

 (VineTake)

 {

 VineTake. ();

 }

 }

 (activeI)

 {

 (Decals[]. ());

 Decals[] ;

 (TakeThis)

 {

 TakeThis. ();

 }

 }

 }

 }

 int secondacitveI ;

 (Decals[])

 {

 (GameObject Vines)

 {

 (.gameObject.activeSelf)

 {

 secondacitveI ;

 }

 (secondacitveI)

 {

 (Decals[]. ());

 Decals[] ;

 }

 }

 }

 (Decals[])

 {

 (GameObject Planters)

 {

 (.gameObject.layer LayerMask. ())

 {

 (Decals[]. ());

 Decals[] ;

 }

 }

 }

 (Decals[].FadeCount Decals[].FadeCount Input. (KeyCode.Mouse1))

 {

 (Decals[]. ());

 (Decals[]. ());

 }

 }

}

if !=

in

if ==

=

=
if !=

in

if ==

++

if !=

if >=

=

if !=

=
if !=

in

if ==

++

if >=

=

if !=

in

if ==

=

if >= && < &&

1 null

G

G

1
1 null

0
2 null

G

G false

null

2

2
2 null

null

0
3 null

G

G false

3

3
3 null

4 null

G

G

4
4 null

5 1 6 1

6
7

foreach

NameToLayer

StartCoroutine Fadein

foreach

AddLine

StartCoroutine Fadein

AddLine

foreach

StartCoroutine Fadein

foreach

NameToLayer

StartCoroutine Fadein

GetKeyDown

StartCoroutine Fadein
StartCoroutine Fadein

"ItemSelection"

"ItemSelection"

This script has several different variables used within the script, to complete the spefic
tasks of the script. These are as follows:

Vines[], Planters[] and Projector (GameObject) - These GameObject’s store the
objects found in the second segment of the game, where the Inventory system is

introduced. This is done so tutorials appear as the parents interact with these items.

18

Decals[] (DecalTextAppear) - This array of Decals store the different decal text blocks
which appear when the correct conditions are met.

Build (bool) - This bool is used to check if the player is in the Build or the Editor, used
for editing purposes.

WhereamI, VineTake, TakeThis (VoiceActing) - These store Voice acting clips played
throughout the Editor script’s purposes.

This script is made from the Start() and Update() functions, with the Start() function
being used to check if the player is in the Build or not. It then plays the WhereamI voice
acting clip, so that it always plays at the start of the game. The Update() function is a
long series of if statements, waiting to check the conditions for each decal text object

to appear have been met. This can be anything from looking at the projector to
collecting two of the inventory vines.

Menu:
This script is used to register the buttons within the game’s Main Menu. It is so simple
that I can explain it in this paragraph, without further study. The script has two public
functions: begingame() and endgame() which are called by the Start and Quit buttons
in the menu respectively. When begingame() is called, the main scene for the game is
called, and when endgame() is called, the game quit’s itself. When the player presses

the escape key in gameplay they return to this menu.

 :
{

 [] ;

 ()

 {

 . ();

 }

 ()

 {

 . ();

 }

 ()

 {

 . ();

 }

}

public

SerializeField GameObject Button

Button

SceneManager

Application

class

void

false

public void

public void

Menu MonoBehaviour

//This script is used for the buttons in the Main Menu

//This stores the Buttons of the Main Menu

// Start is called before the first frame update

Start

SetActive

begingame

LoadScene

endgame

Quit

1

19

Character Movement and Mechanics
This section of the document will discuss the different scripts used to move the player
types around, whether the first person player or the different 2D styles. It will also
discuss the mechanics that the player can play with when using these styles. It will
start by discussing the 2D movement of the player, in the different gameplay styles,
before discussing the mechanics that these styles of gameplay can use. After this it
will do the same process for the 3D mechanics and gameplay. With that, lets begin

analysing it all.

The DecalMovement script is the code used to move the Atari character in the 2D
space, which is the fundamental script that was later copied to program the

movements of the Atari Player. This script started off relatively simple, and grew more
bloated as it progressed. In the actual game version of this, I will work to refine the
system so that it doesn’t use so much code. Without further ado, lets have a look at

the variables used for this script.

DecalMovement:

DecalMovement - Variables:
public :
{

 Rigidbody ;

 float , , , ;

 float ;

 bool ;

 bool ;

 GameObject , ;

 CornerTrigger ;

 CornerTrigger ;

 Vector3 OriginMark.transform.position;

 Vector3 TargetMark.transform.position;

 Vector3 ;

 bool , ;

 Vector3 ;

 Vector3 ;

 Vector3 ;

 float ;

 Vector3 , , , ;

class

public

public

public

public

public

private
private

public =>
public =>

public

public

public
public
public

public

public

DecalMovement MonoBehaviour

//This script is the main movement script for the Atari player

//This stores the Rigidbody of the Atari Player

//This is a collection of floats, which store the speed of the player, the distance of the two markers and the speed of the rotation.

//This bool checks if the player is currently moving right.

//When this bool is true, it means the camera rotates in the their local positions.

//These GameObjects are the ones which the player moves between

//These store the CornerTrigger Scripts for the two GameObjects stored in OriginMark

//These Vector3 variables automatically update to be the value of the positions of the OriginMark and TargetMark scripts.

//This is a debugging variable used to quickly check the value stored in originPos.

//These bools are used to check if the player can move or rotate. Only one can be true at a time.

//These variables are used for debugging purposes, either to set the normal and location of the player, or to update what the current
normal is.

//This float stores the lerp value at which the platform moves when rotating around corners.

//These Vectors store the start and end values for the player's corner movement, storing the start and end for the Location and Normal.

BoxRigid

Sped PosDisChecks PlayDisChecks rotationspeed

Jumpheight

MoveRight

LocalR

OriginMark TargetMark

OriginCT
TargetCT

originPos
targetPos

OriginPosCheck

isMove isRotate

SetNormal
CurrentNormal
SetLocation

rotationLerp

MoveLTo MoveNTo StartLFrom StartNFrom

20

 [SerializeField]Quaternion , ;

 bool ;

 GameObject[] ;

 bool , , , ;

 [SerializeField] Vector3 , ;

 [SerializeField]Quaternion , ;

 [SerializeField] float , ;

 [SerializeField] bool ;

 Camera ;

 [SerializeField] CornerTrigger ;

 [SerializeField]bool ;

 [SerializeField] int ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 [SerializeField] GameObject ;

 [SerializeField] Rock_Trigger , , ;

 bool ;

 [SerializeField] EventsCode ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 [SerializeField] int ;

 [SerializeField]AtariAblilitySave ;

 [SerializeField] int ;

 DecalDeath ;

 [SerializeField] audiomanager ;

//These Quaternion store the start and ending rotation position of the player around corners.

//This bool determines whether the value of the movement around corner needs to be inverted or not.

//This array stores the markers used to set the next markers after rotating

//These bools are used to check if the player is able to jump or move left or right.

//These variables stores values for the camrea around rotations, and the FOV of the camera.

//This bool is true when the camera values change after a corner rotation

//This stores the camera for the 2D section

//This stores the GameObject that will be used if the corner has no script attached

//This bool stores whether the rock should be active or not

//This int stores whether the player is moving or rotating

//This bool determines whether the script should check if they are rotating or moving.

//This bool checks if the player is setting a rock in the 2D space.

//This GameObject is the actual rock stored in the script.

//This is a group of the Rock_Trigger script, which are to check whether the player can place a rock

//This bool is set to true when the player is standing on the rock.

//This checks if the player's rock is inverted with selecting where to place the rock.

//This bool checks if the player is moving on the floor.

//This bool is used to check what type of direction the rock needs to be in

//This is used to check whether abilities are activated in AtariAbilitySave.

//This int is used to set what direction the rock should fall in.

//This stores the death trigger for the player

//This stores the audiomanager for the player's movement.

StartRFrom MoveRTo

invertvalue

Markers

JumpAble LeftAble RightAble CutsceneJump

MoveC_LTo StartC_LFrom
MoveC_RTo StartC_RFrom

MoveC_FOVTo StartC_FOVFrom

CameraChange

GameCamera

NoCT

RockActive

MoveorRot

CheckMove

SettingRock

ActualRock

LeftRock RightRock CurrentRock

RockOn

E

Invert

FLoor

RockType

AAS

rockgravity

DD

AM

public

public

public

public

public

public

As you can see, this script has a lot of variables (and this is after trimming down the useless ones) so
let’s just jump into the analysis.

BoxRigid (Rigidbody) - This variable stores the Rigidbody of the Atari player.

Sped, PosDisChecks, PlayDisChecks, roationspeed (float) - These float variables store the speed of
the player, both in normal movement and when rotating around cornrers, and calculate the distance

that the two movement marks have between each other, and how the the player is from them all.

21

Jumpheight (float) - This float stores the height at which the player jumps.

MoveRight (bool) - This bool stores whether the player is currently moving right or not.

LocalR (bool) - This bool, when true, means that any camera changes during rotation happen in the
local transform of the camera.

OriginMark and TargetMark (GameObject) - These store GameObjects that the player moves
between when moving on the wall.

OriginCT and TargetCT (CornerTrigger) - If the OriginMark and TargetMark GameObjects have the
CornerTrigger attached then they will be stored in these GameObjects.

originPos and targetPos (Vector3) - These Vector3 variables update to store the current positions of
the OriginMark and TargetMark variables.

OriginPosCheck (Vector3) - This Vector3 is used to show the current value of originPos for
debugging purposes.

isMove and isRotate (bool) - These bools are used to check the current movement state of the
player, whether they are moving on the wall or rotating along the corners. These cannot be true at the

same time.

SetNormal, CurrentNormal and SetLocation (Vector3) - These Vector3 variables store the location
and normal the player needs to be placed at during the start of gameplay, and the checks the current

normal the player is at during gameplay.

rotationLerp (float) - This float stores the current lerp that the player uses when rotating around
corners.

MoveLTo, MoveNTo, MoveLFrom, Move,NFrom (Vector 3) - These Vector3 variables are used to set
up the rotation of the player along the corners, checking what position and normal the player needs

to start and end at are.

MoveRTo and MoveRFrom (Quaternion) - These variables store where the rotation starts and ends
when rotating around a corner.

invertvalue (bool) - This bool checks whether the player’s rotation will have inverted values or not.

Markers[] (GameObject) - This array of GameObjects is used to store the markers that the player
swaps between when rotating around a corner.

JumpAble, LeftAble, RightAble, CutsceneJump (bool) - These bools are used to check whether the
player can jump or move left and right. The Cutscene jump is used to keep the player from jumping

during cutscenes.

MoveC_LTo, MoveC_LFrom, MoveC_RTo, MoveC_RFrom, MoveC_FOVTo, StartC_FOVFrom
(Vector3, Quaternion and float) - These variables store values for the camera to change around
corner rotations, similar to how the player stores values when it rotates. Rather then storing the

normal of the camera, it stores the value of its Frame Of View.

22

CameraChange, GameCamera (bool, Camera) - These variables are used to setup camera rotations.
If the CameraChange bool is true then it means the camera will change during the corner rotation,

whilst the GameCamera variables stores the camera for the 2D area.

NoCT (CornerTrigger) - This variable is a blank CornerTrigger component on a gameObject and is
called when either of the markers don’t have any CornerTrigger script attached.

RockActive, MoveorRot, CheckMove, SettingRock, ActualRock (bool, int and GameObject) - These
variables house three bools, RockActive, CheckMove and SettingRock, which are each used for the
placing rock mechanic. RockActive is used to check if the rock has already been placed or not,
CheckMove is used to check if the player is rotating or moving, which is needed to get the rock
placing system working and SettingRock is true when the player is actually placing the rock down.

MoveOrRot is the value which gets effected when the player is Checking their movement, being set at
0 when the player is moving and at 1 when they are rotating. Finally, ActualRock stores the rock

GameObject that can get placed by the player.

LeftRock, RightRock, CurrentRock (Rock_Trigger) - These variables store instances of the
Rock_Trigger component, one for the left spawning and one for the right, with CurrentRock storing the

side which is currently being used out of the two.

RockOn (bool) - This bool checks to see if the player is currently standing on the rock.

E (EventsCode) - This variable stores the Eventscode Component that is within the game.

Invert and FLoor (bool) - The Invert bool is set when the values of the corner rotation need to be
inverted to properly work, whilst the FLoor bool states whether the player is playing on the floor or on

the wall.

RockType (int) - This variable stores what type of rock the player is using, and more specifically, what
direction it is in.

AAS (AtariAbilitySave) - This variable will store the AtariAbilitySave scriptable object, to check the
current values of the abilities the Atari Player can use.

rockgravity, DD and AM (int, DecalDeath and AudioManager) - The DD and AM variables are made to
store the DecalDeath needed to kill the Atari Player and the AudioManager component within the

general scene. rockgravity is used to determine what direction the rock can fall in.

DecalMovement - Start() and Update():

 private ()

 {

 GameObject. (). < >();

 isMove ;

 isRotate ;

 CheckMove ;

void

=

=
=

=

Start

FindGameObjectWithTag GetComponent audiomanagerAM

true
false

true

"AControl"

//The game starts off by having the player moving,

 and has the script check the current move type of the player for debugging purposes.

 }

23

 ()

 {

 (Input. (KeyCode.Escape))

 {

 Cursor.lockState CursorLockMode.None;

 Cursor.visible ;

 SceneManager. ();

 }

 (Input. (KeyCode.))

 {

 . ();

 }

 CurrentNormal gameObject.transform.forward;

 (OriginMark. < >())

 {

 OriginCT OriginMark. < >();

 }

 {

 OriginCT NoCT. < >();

 }

 (TargetMark. < >())

 {

 TargetCT TargetMark. < >();

 }

 {

 TargetCT NoCT. < >();

 }

 (CheckMove)

 {

 (isMove)

 {

 MoveorRot ;

 }

 (isRotate)

 {

 MoveorRot ;

 }

 }

 (FLoor)

 {

 ();

 }

 (FLoor)

 {

 ();

 }

 (ActualRock.activeSelf)

 {

 (RockType)

 {

 :

 {

 ActualRock.transform.rotation (, 0.66320771f, , 0.748435378f);

 }

 ;

 }

 }

 (Input. (KeyCode.Mouse1) .AtariRock)

 {

 RockActive RockActive;

 (RockActive)

 {

 ();

 }

 (RockActive)

 {

 ();

 }

 }

void

if

=
=

if && !=

=

if !=

=

else

=

if !=

=

else

=

if ==

if ==

=

else if ==

=

if ==

else if ==

if ==

switch

case

= new

break

if && ==

= !

if ==

else if ==

Update

GetKeyDown

LoadScene

GetKeyDown

Die

GetComponent CornerTrigger

GetComponent CornerTrigger

GetComponent CornerTrigger

GetComponent CornerTrigger

GetComponent CornerTrigger

GetComponent CornerTrigger

RegularGravity

FloorGravity

Quaternion

GetKeyDown

RockSet

RockSet

//When pressing Escape the game will take the player back to the main menu.

//When pressing Q the script automatically kills the player, so they can restart the current 2D section.

//Checks the current normal of the player.

//Checks if the Markers have CornerTrigger components

//If they don't have any attached, then the CT variable will contain NoCT.

//This checks whether the player is rotating or moving and stores it in the MoveorRot int.

//The script calls different movement functions based off the value of FLoor

//This either means they will be moving in the Y-axis on the floor or X-axis on the wall.

//This changes the rotation of the rock if it is the one that is on the floor.

//Allows the player to place the rock when clicking the left click

//This also works to turn off the rock selection.

true
0

Q DD null

DD

null

null

true

true

1

true

2

false

true

false

1

0 0

AAS true

true

true

false

false

24

 (isMove isRotate SettingRock)

 {

 (Input. (KeyCode.))

 {

 .RockDirection. ();

 .RockDirection. < >(). ();

 (Invert)

 {

 LeftRock.gameObject. ();

 RightRock.gameObject. ();

 CurrentRock LeftRock;

 }

 {

 LeftRock.gameObject. ();

 RightRock.gameObject. ();

 CurrentRock RightRock;

 }

 }

 (Input. (KeyCode.))

 {

 .RockDirection. ();

 .RockDirection. < >(). ();

 (Invert)

 {

 LeftRock.gameObject. ();

 RightRock.gameObject. ();

 CurrentRock RightRock;

 }

 {

 LeftRock.gameObject. ();

 RightRock.gameObject. ();

 CurrentRock LeftRock;

 }

 }

 (CurrentRock.CanPlace)

 {

 (Input. (KeyCode.Mouse0))

 {

 ();

 .RockPlace. ();

 ActualRock.transform.position CurrentRock.gameObject.transform.position;

 ActualRock. < >().velocity Vector3.zero;

 (RockType)

 {

 ActualRock.transform.rotation CurrentRock.gameObject.transform.rotation;

 }

 ActualRock. ();

 LeftRock.gameObject. ();

 RightRock.gameObject. ();

 ();

 }

 }

 }

 }

 private ()

 {

 BoxRigid. (Physics.gravity BoxRigid.mass, ForceMode.Acceleration);

 }

//Allows the player to place the rock before them.

//This changes the direction of the RockTrigger depending on what direction the player is pressing.

//If the player can place a rock down the triggers will stay green, if they can't it goes red.

//If the player can place the rock and places enter then the rock ability will be placed.

//When placing the rock the script resets all it's Rigidbody values so that it doesn't cause glitches.

//The FixedUpdate calls the gravity calculations for the character

//So that it stays consistent between the Editor and Build.

else if == && == && ==

if

if ==

=

else

=

else if

if ==

=

else

=

if ==

if

=
=

if ==

=

void

*

false false true

A

AM true
AM

false

true
false

false
true

D

AM true
AM

false

false
true

true
false

true

AM true

0

true
false

false
false

GetKeyDown

SetActive
GetComponent AudioSource Play

SetActive
SetActive

SetActive
SetActive

GetKeyDown

SetActive
GetComponent AudioSource Play

SetActive
SetActive

SetActive
SetActive

GetKeyDown

RockFreeze
SetActive

GetComponent Rigidbody

SetActive
SetActive

SetActive
RockSet

FixedUpdate

AddForce

The Start() function works to set up the movement of the Player, having them be set to
move along the wall, and to Check the current movement for debugging reasons. THe
Update() function is filled with a bunch of if statements, which do different things. THe
first two things checked are whether the player is pressing the escape or Q key, with

the escape key bringing them back to the main menu, and the Q key killing the 2D
player so they quickly go back to the 3D space.

Next, the script checks the current normal of the script, and if the OriginMark and
TargetMark GameObjects have CornerTrigger components, if either doesn’t then the
NoCT variable will be set in its place. After this, the script checks the current move

type of the player for debugging purposes, if the CheckMove bool is true.

25

After this, the script will call the movement of the player character, based on the value
of FLoor. If FLoor is false then it means the player is moving on the Walls, and as such
the RegularGravity() function is called. If it is true then the player is moving on the

Floors and the FloorGravity() function is called. Both complete the same purpose, just
making them dependent on the X or Y axis respectively.

The rest of the Update() function is reserved for the Rock placing mechanic, starting by
changing the rotation of the gravity based on the value of the RockType. The script

then checks if the player is pressing the Right Click, and will call the RockSet() function
based on this, either working to stop or start the rock setting mechanic. Once the
RockSetting mechanic period is in place, the script will display either LeftRock or

RightRock based on what key the player is pressing, which will check if the rock is able
to placed. The script will then set CurrentRock as whichever Rock_Trigger object is

active, and if the player presses the Enter key whilst the rock is able to be placed, then
the 2D Rock will be set in that position and the Rock setting will end. When placed the
rock will reset all it’s velocity, to stop any glitches, and the FreezeRock() function will be

called to check in what direction the rock should fall in.

Meanwhile, the FixedUpdate() function only has one purpose, to add Gravity to the
player, so that the jump isn’t too floaty. This is done in the FixedUpdate() so that the

gravity is consistent between the Editor and Build.

DecalMovement - RegularGravity():
 public ()

 {

 OriginPosCheck originPos;

 PosDisChecks Vector3. (originPos, targetPos);

 PlayDisChecks Vector3. ((gameObject.transform.position.x, originPos.y, originPos.z),

 originPos);

 float axis Input. ();

 MoveRight axis ;

 (Input. (KeyCode.Space) JumpAble SettingRock CutsceneJump)

 {

 .Jump. ();

 JumpAble ;

 BoxRigid. (Vector3.up Jumpheight, ForceMode.Acceleration);

 (RockOn)

 {

 ActualRock. ();

 RockOn ;

 }

 }

 (isMove isRotate)

 {

 Vector3 UpdateTarget (targetPos.x, gameObject.transform.position.y, targetPos.z);

 Vector3 UpdateOrigin (originPos.x, gameObject.transform.position.y, originPos.z);

void

=
=
= new

=

= > ? :

if && == && == && ==

=
*

if ==

=

if == && ==

= new
= new

RegularGravity

Distance
Distance Vector3

GetAxis

GetKeyDown

SetActive

AddForce

SetActive

Vector3
Vector3

//Calculates the players distance from the markers they are moving towards.

//Stores the input the player makes in the horizontal axis.

//Checks if the player is moving left or right based on the value of axis.

//If the player presses whilst on the ground they will jump.

//If the player is standing on a rock it will despawn.

//If the player can move then they will move between the two markers on the wall.

"Horizontal"

0 true false

true false false

AM true
false

true

false
false

true false

26

 (axis, UpdateTarget, UpdateOrigin);

 (Vector3. (gameObject.transform.position, UpdateOrigin) (Vector3. (UpdateOrigin, UpdateTarget) TargetCT.TurnCheck[]))

 {

 (TargetMark. < >())

 {

MoveCall

Distance Distance

GetComponent CornerTrigger

//Calculates the distance the player is at from the corners, and if close enough causes the player to

rotate around the corner.

if > -

if !=

1

null

 TargetMark.GetComponent<CornerTrigger>().SetupRotate();

 }

 }

 else if (Vector3.Distance(gameObject.transform.position, UpdateOrigin) < OriginCT.TurnCheck[0])

 {

 if (OriginMark.GetComponent<CornerTrigger>() != null)

 {

 OriginMark.GetComponent<CornerTrigger>().SetupRotate();

 }

 }

 }

 //If the player is rotatating will check if they can move left or right, before rotating around the corner.

 else if (isMove == false && isRotate == true)

 {

 if (LeftAble == true && RightAble == true)

 {

 CornerRotation(axis);

 }

 else if (LeftAble == false && RightAble == true)

 {

 if (MoveRight == true)

 {

 CornerRotation(axis);

 }

 }

 else if (LeftAble == true && RightAble == false)

 {

 if (MoveRight == false)

 {

 CornerRotation(axis);

 }

 }

 }

 }

The RegularGravity() function works to move the player along the X axis of the walls,
but is practically identical to the FloorGravity() function, expect that function moves

the player in the Y axis along the floor. Because of this, I am only going to describe and
show one of these functions as showing more would be obsolete.

This function starts by registering the distance between originPos and targetPos, which
is saved in the PosDisChecks. Then the game checks the distance between the player
in the x and z axis compared to originPos. These are used to calculate when the player
should rotate around corners. The function then sets float called axis, which stores the
Input of the player in the Horizontal axis, which is used to set the value of MoveRight, to

check if the player is moving left or right.

If the player presses space, whilst the Atari Player is able to jump, then the character
will jump up. If the player is standing on the rock at the time, then the rock will

deactivate. Finally, we get to the big bit, the movement of the player along the walls. If
isMove is true, and isRotate is false, then that means the player needs to move between

originPos and targetPos. This is done by creating two new Vector3 variables,
UpdateTarget and UpdateOrigin, which store the values of targetPos and originPos, with

the Y axis removed, so that the player can jump freely without it affecting their
movement between the two spaces.

After doing this, the script calls the MoveCall() function, which is used to actually move
the player. It then checks the distance of the player compared to the two target points,
and will set up the rotation based on this value. Once the player reaches near either of

27

the TargetMark or OriginMark, then the script will check to see if the objects have the
CornerTrigger component, and if this is true, then it calls the CornerTrigger’s

SetupRotate() function. After this, isRotate should be true rather then isMove, and this
causes the script to call the CornerRotation() function.

DecalMovement - MoveCall(), SetupRotate() and
SetUpCameraChange():

 (float axis, Vector3 UpdateTarget, Vector3 UpdateOrigin)

 {

 (LeftAble RightAble)

 {

 gameObject.transform.position Vector3. (gameObject.transform.position, MoveRight UpdateTarget UpdateOrigin, Mathf. (axis)

 Time.deltaTime Sped);

 }

 (LeftAble RightAble)

 {

 (MoveRight)

 {

 gameObject.transform.position Vector3. (gameObject.transform.position, MoveRight UpdateTarget UpdateOrigin,

 Mathf. (axis) Time.deltaTime Sped);

 }

 }

 (LeftAble RightAble)

 {

 (MoveRight)

 {

 gameObject.transform.position Vector3. (gameObject.transform.position, MoveRight UpdateTarget UpdateOrigin,

 Mathf. (axis) Time.deltaTime Sped);

 }

 }

 }

 public (Vector3[] , Vector3[] ,Quaternion[] , GameObject[])

 {

 float OriginDis Vector3. (gameObject.transform.position, []);

 float TargetDis Vector3. (gameObject.transform.position, []);

 bool NearOrigin OriginDis TargetDis ;

 isMove ;

 isRotate ;

 rotationLerp .001f;

 MoveLTo NearOrigin [] [];

 MoveNTo NearOrigin [] [];

 StartLFrom NearOrigin [] [];

 StartNFrom NearOrigin [] [];

 MoveRTo NearOrigin [] [];

 StartRFrom NearOrigin [] [];

 Markers[] [];

 Markers[] [];

 Markers[] [];

 invertvalue NearOrigin ;

 }

 public (Vector3[] , Quaternion[] , float[] , bool Localr)

 {

 MoveC_LTo MoveRight [] [];

 StartC_LFrom MoveRight [] [];

 MoveC_RTo MoveRight [] [];

 StartC_RFrom MoveRight [] [];

 MoveC_FOVTo MoveRight [] [];

 StartC_FOVFrom MoveRight [] [];

 LocalR Localr;

 CameraChange ;

 }

void

if == && ==

= ? :
 * *

else if == && ==

if ==

= ? :
* *

else if == && ==

if ==

= ? :
* *

void

=
=

= < ? :

=
=

=

= ? :
= ? :

= ? :
= ? :

= ? :
= ? :

=
=
=

= ? :

void

= ? :
= ? :

= ? :
= ? :

= ? :
= ? :

=

=

MoveCall

MoveTowards Abs

MoveTowards
Abs

MoveTowards
Abs

SetUpRotate

Distance
Distance

SetUpCameraChange

//Checks if the player can move left or right

//Sets the values of the variables used in corner rotation calculation.

//If the camera needs to move will set up the variables that will be used.

true true

false true

true

true false

false

L N Q M

L 0
L 1

true false

false
true

L 1 L 0
N 1 N 0

L 0 L 1
N 0 N 1

Q 1 Q 0
Q 0 Q 1

0 M 0
1 M 1
2 M 2

true false

L Q FOV

L 1 L 0
L 0 L 1

Q 1 Q 0
Q 0 Q 1

FOV 1 FOV 0
FOV 0 FOV 1

true

28

The MoveCall() function is called by the RegularGravity() and FloorGravity() functions to move the
player along the floor of the scene. It does this using a MoveTowards function, moving between

UpdateTarget and UpdateOrigin, and the value of axis, which are all set when the function is called.
The function won’t move the player in the left or right direction is LeftAble or RightAble is false, as that

means they have hit a collision. The movement is done this way so that the player doesn’t clip
through the walls, and stays on track with where they are meant to go.

SetUpRotate(), as the name implies, sets up the player for rotating around the scene’s corners. This is
called by whatever CornerTrigger the player is close to, and sets the start and end of the rotation
based on if the player is near their current OriginPoint. This works to provide the script with all

information necessary to effectively rotate, and helps automate the rotation process. If the player is
moving left whilst rotating, then invert is set to true, as their movements need to be inverted in order
to properly move in that direction. The SetUpCameraChange function does the exact same thing, just

for the rotation of the camera.

DecalMovement - CornerRotation() and
CameraChangeFunction():

 (float axis, Vector3 UpdateTarget, Vector3 UpdateOrigin)

 {

 (LeftAble RightAble)

 {

 gameObject.transform.position Vector3. (gameObject.transform.position, MoveRight UpdateTarget UpdateOrigin, Mathf. (axis) Time.deltaTime Sped);

 }

 (LeftAble RightAble)

 {

 (MoveRight)

 {

 gameObject.transform.position Vector3. (gameObject.transform.position, MoveRight UpdateTarget UpdateOrigin, Mathf. (axis) Time.deltaTime Sped);

 }

 }

 (LeftAble RightAble)

 {

 (MoveRight)

 {

 gameObject.transform.position Vector3. (gameObject.transform.position, MoveRight UpdateTarget UpdateOrigin, Mathf. (axis) Time.deltaTime Sped);

 }

 }

 }

 public (Vector3[] , Vector3[] ,Quaternion[] , GameObject[])

 {

 float OriginDis Vector3. (gameObject.transform.position, []);

 float TargetDis Vector3. (gameObject.transform.position, []);

 bool NearOrigin OriginDis TargetDis ;

 isMove ;

 isRotate ;

 rotationLerp .001f;

 MoveLTo NearOrigin [] [];

 MoveNTo NearOrigin [] [];

 StartLFrom NearOrigin [] [];

 StartNFrom NearOrigin [] [];

 MoveRTo NearOrigin [] [];

 StartRFrom NearOrigin [] [];

 Markers[] [];

 Markers[] [];

 Markers[] [];

 invertvalue NearOrigin ;

 }

 public (Vector3[] , Quaternion[] , float[] , bool Localr)

 {

 MoveC_LTo MoveRight [] [];

 StartC_LFrom MoveRight [] [];

 MoveC_RTo MoveRight [] [];

 StartC_RFrom MoveRight [] [];

 MoveC_FOVTo MoveRight [] [];

 StartC_FOVFrom MoveRight [] [];

 LocalR Localr;

 CameraChange ;

 }

void

if == && ==

= ? : * *

else if == && ==

if ==

= ? : * *

else if == && ==

if ==

= ? : * *

void

=

=

= < ? :

=

=

=

= ? :

= ? :

= ? :

= ? :

= ? :

= ? :

=

=

=

= ? :

void

= ? :

= ? :

= ? :

= ? :

= ? :

= ? :

=

=

MoveCall

MoveTowards Abs

MoveTowards Abs

MoveTowards Abs

SetUpRotate

Distance

Distance

SetUpCameraChange

//Checks if the player can move left or right

//Sets the values of the variables used in corner rotation calculation.

//If the camera needs to move will set up the variables that will be used.

true true

false true

true

true false

false

L N Q M

L 0

L 1

true false

false

true

L 1 L 0

N 1 N 0

L 0 L 1

N 0 N 1

Q 1 Q 0

Q 0 Q 1

0 M 0

1 M 1

2 M 2

true false

L Q FOV

L 1 L 0

L 0 L 1

Q 1 Q 0

Q 0 Q 1

FOV 1 FOV 0

FOV 0 FOV 1

true

29

The CornerRotation() function is used to move the player along the corners of the 2D area.
This only does this for the RegularGravity() function, as the FloorGravity() function does this
via a different function called CornerRotationY(), which is the same, save the fact that it used
to rotate along the Y axis. This function works by using a lerp for the position of the Player’s

Position, Rotation and Normal. The value of the lerp is modified by the value of the axis
variable, and as such allows the player to move left and right with ease.

Once the player reaches the end of the rotation, either when RotationLerp equals 0 or 1, then
the script will set up the player to be able to move along the next wall, setting new values for
the Target and Origin Markers. Once this is done it sets isMove back to true, and isRotate to
false, before resetting every value set in the SetUpRotate() function. If the camera needs to
change during the rotation, then the CameraChangeFunction() is called, which literally does

the same thing, just with the camera’s saved settings.

 ()

 {

 (rockgravity)

 {

 :

 {

 ActualRock.gameObject. < >().constraints RigidbodyConstraints.None
RigidbodyConstraints.FreezeRotation RigidbodyConstraints.FreezePositionX RigidbodyConstraints.FreezePositionZ;

 }

 ;

 :

 {

 ActualRock.gameObject. < >().constraints RigidbodyConstraints.None
RigidbodyConstraints.FreezeRotation RigidbodyConstraints.FreezePositionY RigidbodyConstraints.FreezePositionZ;

 }

 ;

 }

 }

 public (bool newpos, Vector3 Newnormal, Vector3 NewPos)

 {

 (newpos)

 {

 gameObject.transform.forward SetNormal;

 gameObject.transform.position SetLocation;

 }

 (newpos)

 {

 gameObject.transform.forward Newnormal;

 gameObject.transform.position NewPos;

 }

 }

 public (bool can)

 {

 (can)

 {

 isMove ;

 isRotate ;

 }

 (can)

 {

 isMove ;

 isRotate ;

 }

 }

//This function sets in what direction the rock should be affected with gravity for, based on the values of rockgravity.

//This function determines where the 2D player should start, and is called by the GenreSwap script.

//Used to set the value of the 2D player's movement

void

switch

case

= |
| |

break
case

= |
| |

break

void

if ==

=
=

else if ==

=
=

void

if ==

=
=

else if ==

=
=

RockFreeze

GetComponent Rigidbody

GetComponent Rigidbody

SetStart

LetMove

0

1

false

true

true

true
false

false

false
false

DecalMovement - RockFreeze(), SetStart(), LetMove() and
RockSet():

30

 (bool Set)

 {

 (Set)

 {

 isMove ;

 isRotate ;

 CheckMove ;

 SettingRock ;

 (MoveRight)

 {

 LeftRock.gameObject. ();

 CurrentRock LeftRock;

 }

 (MoveRight)

 {

 RightRock.gameObject. ();

 CurrentRock RightRock;

 }

 }

 (Set)

 {

 SettingRock ;

 (MoveorRot)

 {

 :

 {

 isMove ;

 }

 ;

 :

 {

 isRotate ;

 }

 ;

 }

 LeftRock.gameObject. ();

 LeftRock.CanPlace ;

 RightRock.gameObject. ();

 RightRock.CanPlace ;

 CurrentRock ;

 CheckMove ;

 }

 }

//Called to set up the rock ability or deactivate it.

void

if ==

=
=

=
=

if ==

=

else if ==

=

else if ==

=
switch

case

=

break
case

=

break

=

=
=

=

RockSet

SetActive

SetActive

SetActive

SetActive

true

false
false

false
true

true

true

false

true

false

false

1

true

2

true

false
true

false
true

null
true

The remaining functions within this script are all quite small and simple, being used to help
generate the mechanics of the game. The first, RockFreeze(), decides what direction the rock

should have the affects of gravity on, based on the value of rockgravity. The next function,
SetStart() is called by the GenreChange script, and sets the position that the player will be

starting at, either with a position set by the GenreChange instance or based on the values set
in SetLocation and SetNormal.

The LetMove() function is used to quickly change the values of isMove and isRotate, which
can easily be called. The final function within the script is RockSet() which is used to set up
the rock placing ability. In this function it will either set up the rock setting, by stopping the

player from being able to move before turning SettingRock to true, or it will remove the
options, by putting the player back either moving or rotating (based off the value of

MoveorRot) and hiding all the Rock_Trigger gameObjects.

31

Mega_Man_Movement:
The Mega_Man_Movement script is an alternative script used for the Mega Man player in the
2D space. This script uses the same fundamentals established within the DecalMovement

script, so as such would be just repeating myself for most of the script. Instead, I will take the
time to point out what is new within the script, compared to it’s DecalMovement counterpart.

So let’s start by looking at the new variables:

The Mega_Man_Movement script houses almost all the variables that the DecalMovement
script used, with the exception of any to do with jumping or placing rocks, as this gameplay
style can do neither of those. What the Mega Man player can do however, is shoot pollen

bullets. As such, most of the new variables exclusive to this script have to do with that ability,
with some also doing with the sprites of the player, as the Mega Man character actually has

art associated with them. The new variables are as follows:

Mega_Man_Movement - New Variables:
public :
{

 bool ;

 [SerializeField] GameObject[] ;

 [SerializeField] GameObject[] ;

 [SerializeField] GameObject[] ;

 [SerializeField] GameObject ;

 bool ;

 GameObject ;

 [SerializeField] GameObject[] ;

 [SerializeField] GameObject[] ;

 [SerializeField] bool ;

 [SerializeField] float ;

 [SerializeField] Animator ;

 bool ;

class

public

private

private

public

Mega_Man_Movement MonoBehaviour

//This bool is used to check if the player is shooting regular or evil pollen

//This array stores the sprites of the player as decals

//This stores the type of pollen to be shot

//This array stores the spots that the pollen will spawn from.

//Spawn stores whichever is currently in use.

//This bool checks if the pollen should be moving left or right.

//This stores the instance of pollen shot in order to add the appropriate values.

//This stores the sprites used for the player, swapping between walking and shooting pollen

//These variables are used to create a delay between when the player can shoot pollen.

//This stores the character's animator, so that they can animate the player's movement.

//This bool can stop the player from being able to shoot pollen when needed.

pollenbad

Decals

Pollen

BulletSpawn
Spawn

PollenMoveRight

TempPollen

LeftSprites
RightSprites

CanShootPollen
Pollentimer

Anim

CanShoot

32

pollenbad (bool) - This bool stores whether the player is shooting evil or regular pollen. For
context evil pollen is the name given to the type of pollen which shrinks spikes.

Decals[] (GameObject) - This array of GameObjects stores the decal projectors for the
player’s left and right sprites.

Pollen[] (GameObject) - This array of GameObjects stores the pollen prefabs used to shoot
the pollen.

BulletSpawn[] and Spawn (GameObject) - The BulletSpawn array stores the different sides
that pollen can be shot from, with Spawn storing the currently active spawn point out of those

stored in BulletSpawn.

PollenMoveRight (bool) - This bool registers whether the pollen should be moving right or left.

TempPollen (GameObject) - This GameObject stores the current instance of pollen shot.

LeftSprites[] and RightSprites[] (GameObject) - These array of GameObjects store the
sprites for the player during regular movement and shooting in either direction.

CanShootPollen and Pollentimer (bool, float) - These variables are used to create a
cooldown between when the player can shoot pollen, so they don’t spam. When

CanShootPollen is true then the code uses Pollentimer to wait a few seconds before the
player can shoot again.

Anim (Animator) - This stores the Animator used for the Mega Man player’s sprites, so that it
creates the moving animation.

CanShoot (bool) - This bool can be called by other scripts to stop the player from being able
to shoot pollen.

Mega_Man_Movement - Start(), Update(),
DirectionMove() and FixedUpdate():

 private ()

 {

 Anim.speed ;

 isMove ;

 isRotate ;

 (debug)

 {

 (CheckNormal)

 {

 SetNormal gameObject.transform.forward;

 }

 (CheckNormal)

 {

 (, Vector3.zero, Vector3.zero);

 }

 }

 }

void

=
=

=
if ==

if ==

=

else if ==

Start

SetStart

0
true

false
true

true

false

false

33

 ()

 {

 (Input. (KeyCode.Escape))

 {

 Cursor.lockState CursorLockMode.None;

 Cursor.visible ;

 SceneManager. ();

 }

 CurrentNormal gameObject.transform.forward;

 (OriginMark. < >())

 {

 OriginCT OriginMark. < >();

 }

 {

 OriginCT NoCT. < >();

 }

 (TargetMark. < >())

 {

 TargetCT TargetMark. < >();

 }

 {

 TargetCT NoCT. < >();

 }

 OriginPosCheck originPos;

 PosDisChecks Vector3. (originPos, targetPos);

 PlayDisChecks Vector3. (gameObject.transform.position, originPos);

 float axis Input. ();

 (Input. (KeyCode.))

 {

 . ();

 }

 MoveRight axis ;

 (axis)

 {

 Decals[]. (MoveRight);

 Decals[]. (MoveRight);

 (MoveRight)

 {

 :

 {

 Anim RightSprites[]. < >();

 Spawn BulletSpawn[];

 PollenMoveRight ;

 }

 ;

 :

 {

 Anim LeftSprites[]. < >();

 Spawn BulletSpawn[];

 PollenMoveRight ;

 }

 ;

 }

 }

 (axis)

 {

 Anim.speed 0.5f;

 }

 {

 Anim.speed ;

 }

 bool RightorLeft Decals[].activeSelf;

 (Input. (KeyCode.Mouse1))

 {

 pollenbad (pollenbad);

 }

 (Input. (KeyCode.Mouse0) CanShoot)

 {

 (RightorLeft, pollenbad);

 }

 (isMove isRotate)

 {

 Vector3 UpdateTarget (targetPos.x, gameObject.transform.position.y, targetPos.z);

 Vector3 UpdateOrigin (originPos.x, gameObject.transform.position.y, originPos.z);

 (LeftAble RightAble)

 {

 gameObject.transform.position (axis, UpdateTarget, UpdateOrigin);

 }

//This script functions practically the same as the Decal_Movement script, with some small changes

//When pressing space, rather then jumping the player will shoot a bullet in whatever direction they're facing

void

if

=
=

=
if !=

=

else

=

if !=

=

else

=

=
=
=

=

if

= > ? :

if !=

!

switch

case

=
=

=

break
case

=
=

=

break

if !=

=

else

=

=

if

= !

if && ==

if == && ==

= new
= new

if == && ==

=

Update

GetKeyDown

LoadScene

GetComponent CornerTrigger

GetComponent CornerTrigger

GetComponent CornerTrigger

GetComponent CornerTrigger

GetComponent CornerTrigger

GetComponent CornerTrigger

Distance
Distance

GetAxis

GetKeyDown

Die

SetActive
SetActive

GetComponent Animator

GetComponent Animator

GetKeyDown

GetKeyDown

ShootPollen

Vector3
Vector3

DirectionMove

true
0

null

null

Q

DD

0 true false

0

0
1

true

0
0

true

false

0
1

false

0

0

0

true

true false

true true

"Horizontal"

34

 }

 (LeftAble RightAble)

 {

 (MoveRight)

 {

 gameObject.transform.position (axis, UpdateTarget, UpdateOrigin);

 }

 }

 (LeftAble RightAble)

 {

 (MoveRight)

 {

 gameObject.transform.position (axis, UpdateTarget, UpdateOrigin);

 }

 }

 (Vector3. (gameObject.transform.position, UpdateOrigin) (Vector3. (UpdateOrigin, UpdateTarget) TargetCT.TurnCheck[]))

 {

 (TargetMark. < >())

 {

 TargetMark. < >(). ();

 }

 }

 (Vector3. (gameObject.transform.position, UpdateOrigin) OriginCT.TurnCheck[])

 {

 (OriginMark. < >())

 {

 OriginMark. < >(). ();

 }

 }

 }

 (isMove isRotate)

 {

 (LeftAble RightAble)

 {

 (axis);

 }

 (LeftAble RightAble)

 {

 (MoveRight)

 {

 (axis);

 }

 }

 (LeftAble RightAble)

 {

 (MoveRight)

 {

 (axis);

 }

 }

 }

 }

 private Vector3 (float axis, Vector3 UpdateTarget, Vector3 UpdateOrigin)

 {

 Vector3. (gameObject.transform.position, MoveRight UpdateTarget UpdateOrigin, Mathf. (axis) Time.deltaTime Sped);

 }

 private ()

 {

 BoxRigid. (Physics.gravity BoxRigid.mass, ForceMode.Acceleration);

 (CanShootPollen)

 {

 Pollentimer 0.1f;

 (Pollentimer)

 {

 CanShootPollen ;

 Pollentimer ;

 }

 }

 }

else if == && ==

if ==

=

else if == && ==

if ==

=

if > -

if !=

else if <

if !=

else if == && ==

if == && ==

else if == && ==

if ==

else if == && ==

if ==

return ? : * *

void

*

if ==

+=
if >=

=
=

false true

true

true false

false

1

null

0

null

false true

true true

false true

true

true false

false

false

2

true
0

DirectionMove

DirectionMove

Distance Distance

GetComponent CornerTrigger

GetComponent CornerTrigger SetupRotate

Distance

GetComponent CornerTrigger

GetComponent CornerTrigger SetupRotate

CornerRotation

CornerRotation

CornerRotation

DirectionMove

MoveTowards Abs

FixedUpdate

AddForce

The Start() function for this script is practically the same as that of DecalMovement, with the
only difference being that the function sets the speed of the animation stored in Anim to 0, so
that the player isn’t animating itself during movement. The Update() function is where things
kinda change. Since the Mega Man player is only ever placed on walls, it means that there is
only one axis that it can move on, so as such, the movement script is all placed within the
Update() function. This movement script is almost identical to that of the DecalMovement

script, with the only difference being that the player’s movement is set by calling a new
function called DirectionMove(). Apart from that, the movement is pretty similar.

35

The first big difference in the Update() function is when the script checks the value of the axis variable to determine which
sprite should be displayed. This is done to make sure the player is faced in the right direction during gameplay, and that
the spawn points for the bullets are in the right direction. With this the script also sets the currently showing sprites to be
that stored in Anim, which gets a speed of 0.5 whenever the player presses the movement inputs. The reason the player’s
animation is handled this way is because it’s not possible to change the materials of a decal projector in an animation, but
it is possible to activate and deactivate projectors in an animation. Because of this, every sprite for the player has to be its

own projector.

The final new additions to the Update() function for the Mega Man player is the set up for the Pollen shooting. When
pressing the right click button, the game will swap what type of pollen the player will shoot out, inverting the value of the

bool upon clicking. When pressing the left click, the function calls ShootPollen function, storing the values for
PollenMoveRight and pollenbad into the function, which is used for the calculations of the function. The FixedUpdate(), like
with the Atari player, is used to add gravity to the player, but it also used to calculate the time spent waiting when cooling

down from shooting pollen, so that the player can’t spam, and so the speed is consistent between Editor and Build.

Mega_Man_Movement - PollenAnim() and ShootPollen():
 IEnumerator (bool MRight)

 {

 (MRight)

 {

 :

 {

 RightSprites[]. ();

 RightSprites[]. ();

 (0.5f);

 RightSprites[]. ();

 RightSprites[]. ();

 }

 ;

 :

 {

 LeftSprites[]. ();

 LeftSprites[]. ();

 (0.5f);

 LeftSprites[]. ();

 LeftSprites[]. ();

 }

 ;

 }

 }

 public (bool RightorLeft, bool PollenBad)

 {

 int pollennum;

 (PollenBad)

 {

 :

 {

 pollennum ;

 }

 ;

 :

 {

 pollennum ;

 }

 ;

 }

 (CanShootPollen)

 {

 :

 {

 CanShootPollen ;

 ((RightorLeft));

 TempPollen (Pollen[pollennum], Spawn.transform.position, Spawn.transform.rotation);

 TempPollen. < >().MoveRight PollenMoveRight;

 TempPollen. < >().OriginMark OriginMark;

 TempPollen. < >().TargetMark TargetMark;

 TempPollen ;

 }

 ;

 }

 }

PollenAnim

SetActive
SetActive
WaitForSecondsRealtime

SetActive
SetActive

SetActive
SetActive

WaitForSecondsRealtime
SetActive
SetActive

ShootPollen

StartCoroutine PollenAnim

Instantiate
GetComponent Pollen
GetComponent Pollen
GetComponent Pollen

//This function is used to swap sprites to the shooting sprite when the player shoots pollen.

//This bases it off the direction is placed in.

//This script spawns an instance of the pollen to be shot across the stage.

//The type of pollen shot is based off the value of PollenBad

//When shooting pollen the function calls PollenAnim to change sprites.

//Pollen is spawned by instantiating one of the pollen prefabs, and stores the necessary values into the script.

switch

case

yield return new

break
case

yield return new

break

void

switch

case

=

break
case

=

break

switch

case

=

=
=
=
=

=

break

true

0 false
1 true

0 true
1 false

false

0 false
1 true

0 true
1 false

false

0

true

1

true

false

null

36

The PollenAnim() IEnumerator is used to swap the sprite of the player after they shoot pollen,
and is called within the ShootPollen() function. This IEnumerator swaps the sprites of the
currently displayed decal projector over to the one for the shot sprite, before swapping the
sprites back over after a few seconds. The ShootPollen() function is used to, well, shoot the
Pollen Bullets. It first checks the type of pollen that needs to be shot, and then instantiates a
version of that prefab at the necessary Spawn Point. It then gets everything working by setting
the instantiated bullet as TempPollen, and stores the needed values for the calculations found

within the Pollen script, before making the value of TempPollen null. This then starts the
cooldown for the bullet, which works to stop the player from spamming.

This script is the final of the three 2D Gameplay styles, but never made it past the
prototype stage of development. I plan for this to be in the full release of the game, but
for now it is an unused script. Since it’s unused, I will summerise it all under all the new
elements found in the complete script, as it reuses aspects from DecalMovement

again. The main difference is the player can move in the X and Y axis at the same time,
meaning it also needs two movement and rotation functions for this, like with the Decal
Player. These allow the player to move in both directions at the same time, and aren’t
as limited as the movement of the Decal Player. The only other new element is that the
player is able to swing their sword in the space, which can destroy objects. Anyway,

time for a quick look at the script.

Zelda_Movement:

Zelda_Movement - Script:
public :
{

 bool , ;

 bool , ;

 [SerializeField] GameObject[] ;

 bool ;

 bool ;

 IEnumerator ()

 {

 Decals[]. ();

 Decals[]. ();

 Sword ;

 (0.5f);

 Sword ;

 Decals[]. ();

 Decals[]. ();

 SwungSword ;

 }

}

class

public
public

public

private

=
yield return new

=

=

Zelda_Movement MonoBehaviour

SwordSwipe

SetActive
SetActive

WaitForSeconds

SetActive
SetActive

//This script is the for Zelda Gameplay style, which never made it past the prototyping stages of

 development.

//This will want to be set in a full game, but is currently unneeded, as such, there will not be many notes.

//This checks if the player is moving and rotating the X and Y axis.

//This stores the decals of the player

//This is true when the player swings their sword.

//This is called when the player has finished swinging their sword.

//This IEnumerator works to swipe the players sword before returning to normal

isMoveX isRotateX
isMoveY isRotateY

Decals

Sword

SwungSword

0 false
1 true
true

false
0 true
1 false

false

37

The Zelda_Movement script only has a few new variables, which are as follows:

isMoveX, isRotateX, isMoveY and isRotateY (bool) - These bools are used for the
movement and rotation calculations, with one set for each direction the player can

move in, so that they can move in both directions at the same time.

Decals[] (GameObject) - This variable array stores the projectors for the different
sprites for the Zelda Player, with the sprites only being no movement and swinging

sword.

Sword and SwungSword (bool) - These bools are used to check if the player has
swung their sword or not, and are used for the swining sword process.

The only new function in this script, as all the others use elements seen in either
DecalMovement or Mega_Man_Movement, is the IEnumerator SwordSwipe() which is
used to swing the players sword. This is called in the movement functions when the
player presses space. This IEnumerator just completes the process of changing the

sprites of the decal and setting Sword to true, before waiting a few seconds and
putting everything back to normal. The function sets SwungSword to true when called
so the player can’t spam the swing, and this gets set back to false when the function is

complete.

Rock_Trigger, AddGravity and RockWallCheck:
With the 2D gameplay styles discussed, I will now take the time to discuss the different
scripts used to set up the differing mechanics in the 2D space. The first of these are to

do with the set up for the 2D rock scripts. The scripts made for this are as follows:
Rock_Trigger, which is used for the Rock_Trigger variables in the DecalMovement script

which check if the player has space to place a rock; The second is AddGravity, a
system setting first created for the means of adding gravity to the rock, this script also

has several things that only effect specific objects, such as the rock; Finally, we have
RockWallCheck, which is used to have the rock use proper collision when hitting a wall

whilst on a moving platform, as that was a glitch the player faced. I will now start
explaining each of these scripts in turn to show the reasons for their design.

public :
{

 [SerializeField]DecalProjector ;

 [SerializeField]Material ;

 [SerializeField]Material ;

 bool ;

class

public =

Rock_Trigger MonoBehaviour

//This script creates triggers which check whether the 2D Rock can be placed in a spot or not.

//This stores the decal projector of the player

//This is the material the DecalProjector swaps to when it can be placed

//This is the material the DecalProjetor swaps to when it can't be placed

//CanPlace is the bool states when the player can place the rock or not.

DP

Good

Bad

CanPlace true

Rock_Trigger - Script:

38

// Update is called once per frame

//The material of the projector is effected by the value of CanPlace

//This script is used on the triggers that spawn the rock object, checking whether the rock can be placed.

 ()

 {

 (CanPlace)

 {

 .material Good;

 }

 (CanPlace)

 {

 .material Bad;

 }

 }

 ()

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 CanPlace ;

 }

 }

 ()

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 .material Good;

 CanPlace ;

 }

 }

}

void

if ==

=

else if ==

=

private void

if == || == || ==

=

private void

if == || == || ==

=
=

Update

OnTriggerStay

OnTriggerExit

true

DP

false

DP

false

DP
true

Collider other

Collider other

"Floor" "MoveFloor" "Wall"

"Floor" "MoveFloor" "Wall"

The Rock_Trigger script only has the simple purpose of adding the triggers which check whether the
rock can be placed or not. There are two of these attached to the player, one to the left of the player
and one to the right. Since the purpose of this script is simple, the script only has a few variables,

which are as follows:

DP (DecalProjector) - This stores the projector for the Rock_Trigger object.

Good and Bad (Material) - These Material variables store the different materials the Rock_Trigger
script swaps between when checking the trigger, with Good being a green colour and Bad being Red.

CanPlace (bool) - This bool is checked by the DecalMovement script when trying to place the rock,
and determines whether the rock has space to be placed.

The material of DP is changed to one of Good or Bad based on the value of CanPlace, with the script
setting the materials in the Update() function. The value of CanPlace is changed when something
enters the trigger of the instance, or when something exits it. CanPlace is automatically set as true,
because then it stops any glitches where the game no longer allows the player to place rocks if their

is a collider glitch.
AddGravity - Script:

public :
{

 [SerializeField] Rigidbody ;

 [SerializeField] EventsCode ;

 [SerializeField] float ;

 [SerializeField] float ;

class AddGravity MonoBehaviour

//This script is used to add gravity to objects in the game.

//It has extra functions for when it attached to a 2D Rock

//This stores the Rigidbody of the object

//This stores the EventsCode script

//This stores the current position of the rock in the x and z axis

BoxRigid

E

x
z

39

//This checks when the Rock has collided with a wall

//When this is true it means this script will also be used to calculate collisions

//This stores the DecalArea of the current instance of the rock

// Update is called once per frame

//The update function is used to keep the player in the x and z axis positions stored in x and z when it collides with a wall.

//The Gravity is called in the FixedUpdate to keep it consistent.

//The Collision for this is only used for the 2D rocks.

//It checks if the rock has collided with a rock, and if it has then it freezes the position of the rock in the x and y axis.

//When colliding with the floor the rock no longer is parented to a moveplatform, and instead gets parented to the decalarea

 [SerializeField] bool ;

 [SerializeField] bool ;

 [SerializeField] GameObject ;

 ()

 {

 (WallHit CollideCalc)

 {

 gameObject.transform.position (x, gameObject.transform.position.y, z);

 }

 }

 ()

 {

 BoxRigid. (Physics.gravity BoxRigid.mass, ForceMode.Acceleration);

 }

 ()

 {

 (CollideCalc)

 {

 (collision.gameObject.tag)

 {

 x gameObject.transform.position.x;

 z gameObject.transform.position.z;

 WallHit ;

 }

 (collision.gameObject.tag)

 {

 WallHit ;

 gameObject.transform.parent DecalArea.transform.parent;

 }

 }

 }

}

WallHit

CollideCalc

DecalArea

Collision collision

void

if == && ==

= new

private void

*

private void

if ==

if ==

=
=

=

if ==

=
=

Update

Vector3

FixedUpdate

AddForce

OnCollisionEnter

true false

false

true

false

"Wall"

"Floor"

The AddGravity script is attached to objects in the scene which need to be affected by a consistent
level of gravity. This is done in the FixedUpdate() much like how it is in the Player scripts. Every other

variable and function in this script is there for functions that only effect 2D rock objects. The variables
needed are as follows:

BoxRigid (Rigidbody) - This stores Rigidbody for the object that needs to have gravity affecting it.

E (EventsCode) - This variable stores the Eventscode Component that is within the game.

x and z (float) - These float variables are used to store the position of the Rock when it collides with
the Wall in the x and y axis, so that it doesn’t move position.

CollideCalc and WallHit (bool) - These bools are used for the 2D Rock calculations, with nothing
happening if CollideCalc isn’t false. WallHit is true when the rock collides with a wall.

DecalArea (GameObject) - This stores the DecalArea currently used for the rock, and works to parent
the rock back to this area after it falls off a moving platform.

The Update() function is used when the rock collides with a wall, and works to freeze it’s movement in
the x and z positions, so that it doesn’t move with the MovingPlatform, whilst letting it fall in the Y axis.
The collision of the rock is checked in OnCollisionEnter(), which sets the values of x and z to the rock’s
current position in the x and z axis when they collide with a Wall. This also sets WallHit as true. When
the rock collides with the floor, then it gets parented to the DecalArea and WallHit is set to false. This
script is useful to add gravity, and has this needed code to get the collision of the rock working right.

40

RockWallCheck - Script:

Pollen - Script:

This is a script made specifically for the rock’s trigger with walls, like with the functions added to
AddGravity. This script is quite simple, so I won’t go for a thorough analysis. This script only has one
function, being OnTriggerEnter() which checks when the rock collides with a wall, before parenting

them back to the regular normal of the rock. I am almost certain this script is mostly obsolete, but just
in case, I decided to keep it in the game.

Both the Mega Man Player and the Zelda Player have unique abilities that require one
piece of unique code each. For the Mega Man player this is the Pollen script, which is
attached to the prefabs for the pollen bullets. This script works to move the bullet
across the screen after being shot. The Zelda ability on the other hand has the

SwordDestroy script which is attached to objects that the Zelda character can destroy
when swinging. Anyway, let’s start looking at these scripts.

Pollen and SwordDestroy:

public :
{

 GameObject , ;

 Vector3 OriginMark.transform.position;

 Vector3 TargetMark.transform.position;

 bool ;

 float ;

 bool ;

class

public

public =>
public =>

public

public

public

Pollen MonoBehaviour

//This script is used for the 2D pollen bullets which are shot by the Mega Man Player.

//This stores the positions that the bullet will move between

//This stores the position the bullet needs to move towards.

//This checks if it is moving right

//This checks the speed of the object

//This checks if the bullet is moving up.

OriginMark TargetMark

originPos
targetPos

MoveRight

Speed

MoveUp

public :

{

 [SerializeField] GameObject ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 ()

 {

 (other.gameObject.tag)

 {

 (Rock.transform.parent AttatchedMove.transform)

 {

 Rock.transform.parent NormalParent.transform;

 }

 }

 }

}

class

private void

if ==

if ==

=

RockWallCheck MonoBehaviour

OnTriggerEnter

//This checks when the rock has been attached to a MovingPaltofrm and collides with a wall, so it unparents itself.

Rock

Left

Right

AttatchedMove

NormalParent

Collider other

"Wall"

41

void

if ==

= new
= new

else

= new
= new

= ? : *

if == || ==

private void

if == || ==

 ()

 {

 Vector3 UpdateTarget;

 Vector3 UpdateOrigin;

 (MoveUp)

 {

 UpdateTarget (targetPos.x, gameObject.transform.position.y, targetPos.z);

 UpdateOrigin (originPos.x, gameObject.transform.position.y, originPos.z);

 }

 {

 UpdateTarget (targetPos.x, targetPos.y, gameObject.transform.position.z);

 UpdateOrigin (originPos.x, originPos.y, gameObject.transform.position.z);

 }

 gameObject.transform.localPosition Vector3. (gameObject.transform.localPosition, MoveRight UpdateTarget UpdateOrigin, Speed Time.deltaTime);

 (gameObject.transform.position UpdateTarget gameObject.transform.position UpdateOrigin)

 {

 (gameObject);

 }

 }

 ()

 {

 (collision.gameObject.tag collision.gameObject.tag)

 {

 (gameObject);

 }

 }

}

FixedUpdate

Vector3
Vector3

Vector3
Vector3

MoveTowards

Destroy

OnCollisionEnter

Destroy

//This script is attatched to the pollen bullet and allows them to constatly move across the walls, before deleting themselves

//The values of UpdateTarget and UpdateOrigin depened on whether the bullet is moving up or sideways.

//The object moves the same way as the Decal Player

//When reaching the end of its movement, the bullet destroys itself

//When colliding with a wall or floor the pollen destroys itself.

false

Collision collision

"Wall" "Floor"

The Pollen script is used to move the pollen bullets across the 2D scene much like how
the 2D players move. This script has several variables:

OriginMark, TargetMark, originPos, targetPos, MoveRight, Speed (GameObject,
Vector3, bool, float) - These variables are stored together as the all serve the same

purposes as the variables of the same name in DecalMovement.

MoveUp (bool) - This bool checks if the bullet is meant to be moving upwards, rather
then sideways.

The main function of this script is the FixedUpdate() which automatically moves the
pollen across the scene based on a MoveTowards function. This function moves

between UpdateTarget and UpdateOrigin in the direction it was shot from by the Mega
Man Player. The values of UpdateTarget and UpdateOrigin are updated constantly, and
depending on teh value of MoveUp may actually move the bullet up the Y-axis, rather

then along the X. If the pollen reaches the location of one of the target Vector3
variables, or it collides with the wall or floor, then the bullet gets destroyed.

SwordDestroy - Script:
public :
{

 [SerializeField] Zelda_Movement ;

 ()

 {

 (Zm.Sword)

 {

 (gameObject);

 }

 }

 ()

 {

 (Zm.Sword)

 {

 (gameObject);

 }

 }

}

class

private void

if ==

private void

if ==

SwordDestroy MonoBehaviour

OnCollisionEnter

Destroy

OnCollisionStay

Destroy

Zm

Collision collision

Collision collision

//This script is attatched to objects which can be destroyed by the sword object, destroying them if the sword enters there collision

true

true

42

This script is incredibly small and simple. It works as a Trigger attached to objects
which can be destroyed by the Zelda Player’s sword. This is done via OnTriggerEnter()
and Stay() functions, which check when the sword has been swung, so that the object

can be destroyed.

The final bit of code needed to set up the movement of the 2D characters are
DecalTrigger and DecalDeath. DecalTrigger is used to get the collisions to effectively
work within the scene, as I found using only the regular box collider caused issue with
collisions. The DecalTrigger script is assigned to three trigger around the 2D players,
one on the left, one on the right and one below. These are used to check when the
player is colliding with the wall or floor, and whether they are being blocked from

moving or jumping. DecalDeath is a simple script used to create triggers that kill the 2D
player, taking them out the 2D space and getting them to retry. This is then used to

also reset the player in the current 2D section.

DecalTrigger and DecalDeath:

DecalTrigger - Script:
public :
{

 [SerializeField] AtariAblilitySave ;

 [SerializeField] DecalMovement ;

 [SerializeField] Mega_Man_Movement ;

 [SerializeField]bool , , ;

 [SerializeField] bool ;

 ()

 {

 (Jump)

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 (.AtariJump)

 {

 .JumpAble ;

 }

 (other.gameObject.tag)

 {

 .RockOn ;

 }

 (other.gameObject.tag)

 {

 OnMoveFloor ;

 ()

 {

 .gameObject.transform.parent other.gameObject.transform;

 }

 ()

 {

 .gameObject.transform.parent other.gameObject.transform;

 }

 }

 }

 }

 (Left)

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 ()

 {

 .LeftAble ;

 }

 ()

 {

 .LeftAble ;

 }

 }

 }

class

private void

if ==

if == || == || ==

if == && !=

=

if == && !=

=

if ==

=
if !=

=

if !=

=

else if ==

if == || == || == || ==

if !=

=

if !=

=

DecalTrigger MonoBehaviour

OnTriggerStay

//This script can work on both the Atari Player and the Mega Man Player

//These bools set where the trigger are set.

//This is true when the player is standing on a moving platform.

//This script is used on the three triggers surrouding the 2D player and will check whether they are colliding with a wall or the floor.

//If this is attatched to the right or left trigger this will cause the player to stop moving in that direction, whilst the bottom trigger will check if the player can jump.

AAS

DM

MMM

Jump Left Right

OnMoveFloor

Collider other

true

AAS true DM null

DM true

DM null

DM true

true
DM null

DM

MMM null

MMM

true

DM null

DM false

MMM null

MMM false

"Floor" "MoveFloor" "Rock"

"Rock"

"MoveFloor"

"Floor" "Wall" "Rock" "MoveFloor"

43

Whilst large, the DecalTrigger script actually completes very simple tasks. The script
has several variables, which are as follows:

AAS, DM and MMM (AtariAbilitySave, DecalMovement and Mega_Man_Movement) -
These variables store instances of the scripts listed, and are used to check the collision

of these objects.

Jump, Left, Right, OnMoveFloor (bool) - These bools are used to check which trigger
the instance of the script is. Left checks the left side, Right the right, Jump checks the
floor and OnMoveFloor is set to true when the player stands on a moving platform.

 (Right)

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 ()

 {

 .RightAble ;

 }

 ()

 {

 .RightAble ;

 }

 }

 }

 }

 ()

 {

 (Jump)

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 (.AtariJump)

 {

 .JumpAble ;

 }

 (other.gameObject.tag)

 {

 .RockOn ;

 }

 (other.gameObject.tag)

 {

 OnMoveFloor ;

 ()

 {

 .gameObject.transform.parent ;

 }

 ()

 {

 .gameObject.transform.parent ;

 }

 }

 }

 }

 (Left)

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 ()

 {

 .LeftAble ;

 }

 ()

 {

 .LeftAble ;

 }

 }

 }

 (Right)

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 ()

 {

 .RightAble ;

 }

 ()

 {

 .RightAble ;

 }

 }

 }

 }

}

else if ==

if == || == || == || ==

if !=

=

if !=

=

private void

if ==

if == || == || ==

if == && !=

=

if == && !=

=

if ==

=
if !=

=

if !=

=

else if ==

if == || == || == || ==

if !=

=

if !=

=

else if ==

if == || == || == || ==

if !=

=

if !=

=

true

DM null

DM false

MMM null

MMM false

true

AAS true DM null

DM false

DM null

DM false

false
DM null

DM null

MMM null

MMM null

true

DM null

DM true

MMM null

MMM true

true

DM null

DM true

MMM null

MMM true

"Floor" "Wall" "Rock" "MoveFloor"

"Floor" "MoveFloor" "Rock"

"Rock"

"MoveFloor"

"Floor" "Wall" "MoveFloor" "Rock"

"Floor" "Wall" "MoveFloor" "Rock"

OnTriggerExit Collider other

44

This script only has two large functions, OnTriggerStay() and OnTriggerExit().
OnTriggerStay(). These functions check what is colliding with the different trigger

types, and sets the appropriate variables as true or false. The variables all get set false
when exiting a trigger, but only specific variables can be changed per trigger type. Each

type of trigger, whether left, right or jump checks to see if it is assigned to the
Mega_Man_Player of the DecalMovement script, and sets the right variables based on
that. The Left and Right triggers will set the LeftAble and RightAble variables of the
scripts as false when they collide with an object, thus stopping the players from

walking into walls. The Jump trigger is the one that is unique, checking if the player is on
the ground, and therefore if the Atari Player can jump. This trigger also checks when the
player is standing on a moving platform, and parents them to the platform, so that they
move with the platform as it goes. This system works well to easily, and concisely, have

the correct collision for the 2D players.

This script is incredibly short, but incredibly important. It is a trigger, which when
entered, kicks the player back to the 3D space, allowing me to effectively provide a
form of death during the platforming segments. This is done via the Die() function,

which is called when the player enters the trigger, or when the player presses the Q key.
This function calls the Setup3D function found in the GenreSwap script stored to the

variable GS.

With the 2D Movement types, and the mechanics that come along with them,
discussed it is now time to bring our attention over to the movement and mechanics
for the 3D sections of gameplay. This will start with a discussion on the FPS_Movement
script, which is used to get the 3D player moving. This works quite well to get effective
3D movement, and really ties the 3D space together. So, let’s start by having a look at

the variables used in this script:

DecalDeath - Script:
public :
{

 [SerializeField]GenreSwap ;

 ()

 {

 (other.gameObject.tag)

 {

 ();

 }

 }

 ()

 {

 (. ());

 }

}

class

private void

if ==

public void

DecalDeath MonoBehaviour

OnTriggerEnter

Die

Die

StartCoroutine Setup3D

GS

Collider other

//When entering the trigger the player will be kicked back to the 3D section of gameplay.

//This script can be called by other scripts to quickly leave the 2D space.

"Player"

GS

FPS_Movement:

45

FPS_Movement - Variables:
public :
{

 float ;

 Transform ;

 float ;

 float ;

 float ;

 Vector3 ;

 Rigidbody ;

 bool ;

 bool ;

 [SerializeField] Inventory ;

 [SerializeField] GameObject ;

 bool ;

 [SerializeField] audiomanager ;

 [SerializeField] float ;

 [SerializeField] float ;

 bool ;

class

public

public

public

public

public

public

public

FPS_Movement MonoBehaviour

//This script is used to program the movement of the 3D character

//This is the speed the player walks at

//This stores the Transform of a empty object, which is used to make sure the player is moving forward relative to their rotated position.

//This is used to change the drag of the player's rigidbody, which affects the Rigidbody's speed.

//These store the inputs of the player in the Horizontal and Vertical axis.

//This stores the direction the player should be moving towards

//This stores the scripts Rigidbody

//This checks if the player has opened the inventory menu

//This checks if the player can move

//This stores the Inventory script

//This stores the camera's raycast

//This checks if the player has pressed the I key

//This stores the AudioManager

//This stores the velocity the player moves at in the X and z axis

//This checks if the player is moving or not

MoveSpeed

Orientation

Drag

HInput
VInput

moveDirection

myRigidbody

openInventory

CanMove

I

CR

PressI

AM

xVel
zVel

moving

This script has several variables all needed for it to work, which are as follows:

MoveSpeed and Drag (float) - The MoveSpeed float stores the speed that the player
moves by, whilst Drag stores the amount of drag that should effect the Player

Movement.

Orientation (Transform) - This stores the transform of a child to the 3D player, which is
used to check where the current forward of the player is. This Transform is important in

making sure the player always moves forward.

HInput and VInput (float) - These float variables take in the input of the player in the
Horizontal and Vertical axis respectively.

moveDirection (Vector3) - This stores the direction that the player should move
towards.

myRigidbody (Rigidbody) - This stores the Rigidbody of the 3D player.

46

openInventory and CanMove (bool) - These bools check whether the player is
opening the inventory, or whether they can currently move.

I and CR (Inventory and GameObject) - I stores the Inventory script, whilst CR stores
the GameObject that produces the Camera’s Raycast.

PressI (bool) - This checks if the player has pressed the I key.

AM (AudioManager) - This stores the scene’s AudioManager.

xVol and zVol (float) - These floats store the velocity of the player in the x and z axis.

moving (bool) - This bool checks if the player is moving, and is used to play the
footstep audio.

FPS_Movement - Start(), Update() and FixedUpdate():

 ()

 {

 GameObject. (). < >();

 myRigidbody < >();

 myRigidbody.freezeRotation ;

 CanMove ;

 PressI ;

 }

 ()

 {

 ();

 ();

 myRigidbody.drag Drag;

 (PressI)

 {

 (Input. (KeyCode.))

 {

 openInventory (openInventory);

 (openInventory)

 {

 Cursor.lockState CursorLockMode.None;

 Cursor.visible ;

 CanMove ;

 . ();

 . ();

 }

 (openInventory)

 {

 PressI ;

 . ();

 }

 }

 }

// Start is called before the first frame update

//This sets up the Player in the scene, attaching values to variables and making sure the player can move.

// Update is called once per frame

//The Update() function sets up the speed max for the player and the movement inputs.

//Checks if the player is entering the inventory or closing it.

void

=
=

=

=

=

void

=

if ==

if

= !
if ==

=
=

=

else if ==

=

Start

FindGameObjectWithTag GetComponent audiomanager
GetComponent Rigidbody

Update

FPSInput
SpeedContral

GetKeyDown

SetActive
OpenInventoryB

OpenInventoryB

AM

true

true

true

true

I

true

true
false

CR false
I true

false

false
I false

"AControl"

47

 (Input. () Input. ())

 {

 .Walking ;

 moving ;

 }

 {

 .Walking ;

 moving ;

 }

 (Input. (KeyCode.Escape))

 {

 Cursor.lockState CursorLockMode.None;

 Cursor.visible ;

 SceneManager. ();

 }

 }

 private ()

 {

 (CanMove)

 {

 ();

 }

 }

//This checks if the player is moving, and then players the footsteps audio when they are.

//When pressing Escape, the player gets brought back to the MainMenu

//If the player can move, then the Movement functions are called in the FixedUpdate()

if ||

=
=

else

=
=

if

=
=

void

if ==

GetButton GetButton

GetKeyDown

LoadScene

FixedUpdate

PlayerMovement

"Horizontal" "Vertical"

AM true
true

AM false
false

true
0

true

The Start() function is used to initiate the 3D movement, setting the values of Variables
such as AM or myRigidbody. It also sets it so the rotations of myRigidbody are frozen,
so that it doesn’t mess with the Camera Rotations. It then sets the player so they can
move. The Update() function is first used to set up the values used for movement in the
FPSInput() function. It then also sets the max speed the player should move at using
the SpeedContral() function. After this it adds drag to the player’s rigidbody, so that

they have some realsitic form of speed.

Next, the script checks if the player has pressed the I key. If they have, then they stop
being able to move and the Inventory opens. If the inventory is already open then they
go back to being able to move. After this, the Update() function checks whether they
are pressing the movement keys, and if they are then the script plays the footstep

audio used by the player. The final thing the Update() checks is whether the player has
pressed the Escape key. If the player has, then they get booted back to the Main Menu.

The Movement function for this script, PlayerMovement(), is called within the
FixedUpdate() function, so that the movement speed is consistent between Editor and

Build.
FPS_Movement - FPSInput(), SpeedContral() and

PlayerMovement(): private ()

 {

 HInput Input. ();

 VInput Input. ();

 }

 private ()

 {

 moveDirection Orientation.forward VInput Orientation.right HInput;

 myRigidbody. (moveDirection.normalized MoveSpeed, ForceMode.Force);

 }

void

=
=

void

= * + *

*

FPSInput

GetAxisRaw
GetAxisRaw

PlayerMovement

AddForce

//Registers the player input

//Calculates the player's movement

"Horizontal"
"Vertical"

48

The FPSInput() function is used to store the values of HInput and VInput into the values of the Input in
the Horizontal and Vertical axis. This function is used to update the values each frame. The

PlayerMovement() function is used for the actual movement of the player, with the function first
figuring out what direction is forward for the player, before adding force to the Player’s rigidbody in

the direction of the object’s normal. Finally, SpeedContral() is a function used to limit the velocity cap
for the player, making sure that when moving the player doesn’t exceed the max velocity, so the

player can’t move too fast.

Whilst the FPS_Movement script works to have the player move in the 3D space, it is
only half the story of what was programmed to move the player in the 3D space. The
FPS_Camera script works to move the camera of the Player with the mouse, and uses
this to effect the orientation of the script. The CameraRaycast is attached to a child of
the FPS_Camera, and produces a raycast which allows the player to interact with items

and objects in the scene.

 private ()

 {

 Vector3 SetVelocity (myRigidbody.velocity.x, 0f, myRigidbody.velocity.z);

 (SetVelocity.magnitude MoveSpeed)

 {

 Vector3 LimitVelocity SetVelocity.normalized MoveSpeed;

 myRigidbody.velocity (LimitVelocity.x, myRigidbody.velocity.y, LimitVelocity.z);

 }

 }

void

= new

if >

= *
= new

SpeedContral

Vector3

Vector3

//Checks and maintains the speed of the player in movement.

FPS_Camera and CameraRaycast:

FPS_Camera - Script:
public :
{

 float ;

 float ;

 Transform ;

 float ;

 float ;

 [SerializeField] FPS_Movement ;

 ()

 {

 Cursor.lockState CursorLockMode.Locked;

 Cursor.visible ;

 }

 ()

 {

 (.CanMove)

 {

 float mouseX Input. () Time.deltaTime XSensitivity;

 float mouseY Input. () Time.deltaTime YSensitivity;

 yRotation mouseX;

 xRotation mouseY;

 xRotation Mathf. (xRotation, 90f, 90f);

 transform.rotation Quaternion. (xRotation, yRotation,);

 Orientation.rotation Quaternion. (, yRotation,);

 }

 }

}

class

public
public

public

void

=
=

void

if ==

= * *
= * *

+=
-=

= -

=
=

FPS_Camera MonoBehaviour

Start

Update

GetAxisRaw
GetAxisRaw

Clamp

Euler
Euler

//This works to rotate the First Person Character's camera view and to move the player in the direction the camera is facing.

//These store the sensitivety of the mouse in the X and Y axis.

//This stores the Transform that affects the forward orientation of the player's movement.

//These store the current rotation of the camera.

//This stores the player's FPS_Movement script.

// Start is called before the first frame update

//The Start() function removes the mouse from the screen.

// Update is called once per frame

//This script allows the FPS camera to rotate around a locked range.

//Makes it so you can't look up or down more then 90 degrees

// Sets up the rotation of the camera and its orientation

XSensitivity
YSensitivity

Orientation

xRotation
yRotation

FPSM

false

FPSM true

0
0 0

"Mouse X"
"Mouse Y"

49

The FPS_Camera script has several variables needed to calculate the rotation of the
camera, they are as follows:

XSensitivity, YSensitivity, xRotation and yRotation (float) - These floats are used to
calculate the rotation of the camera. XSensitivity and YSensitivity are used to calculate
the input of the mouse in the X and Y axis, which are then used to calculate the current

rotation of the camera in those axis.

Orientation (Transform) - This stores the Transform variable used to effect the
direction the player moves towards.

FPSM (FPS_Movement) - This stores the FPS_Movement script that the 3D player uses.

The Start() function for this script is used to lock in the mouse, stopping it from
appearing within the scene. The rest of the code for this all takes place in the Update()
function, which takes in the input from the mouse in the X and Y axis multiplied by the
Sensitivity floats. This value is then added or removed from the xRotation and yRotation
float, with the value of xRotation being clamped so that the player can only rotate by
90 degrees in either direction. With this done, the script rotates the camera by these
values, and the Orientation transform gets rotated only along the Y-axis. For, when
rotating in the Y axis it means the object is rotating left and right, and the X-axis is

rotating up and down.

CameraRaycast - Variables:
public :
{

 [SerializeField] float 100f;

 [SerializeField] LayerMask ;

 Camera ;

 [SerializeField] GameObject ;

 [SerializeField] int ;

 [SerializeField] GameObject ;

 GameObject[] ;

 Material[] ;

 int ;

 DecalProjector ;

 bool ;

 [SerializeField] GameObject ;

 GameObject ;

class

=

public

public

public

private

private

public

public

CameraRaycast MonoBehaviour

//This script produces a raycast from the 3D player which allows them to interact with objects in the scene.

//This stores the range of the raycast

//This stores the Layers that the Raycast can interact with

//This stores the 3D Player's camera

//This stores the item hit by the raycast

//This stores the hit items default layer type

//This shows the Press E UI when highlighting an interactable object.

//This stores the diffrent CrossHair icons

//This stores the regular and highlighted materials for the cracks.

//This sets the type of object highlighted.

//This is used to store highlighted DecalProjectors

//This checks if the player is 2D.

//This stores the start and end point of the raycast for Debugging purposes.

range

LM

GameCamera

InventoryItem

LayerDefault

PressE

CrossHair

Cracks

Type

DP

Set2D

EndMarker
StartMarker

50

The CameraRaycast script has several variables all needed to generate the script. They
are as follows:

range (float) - This float stores the range of the raycast.

LM (LayerMask) - This stores the Layers that the raycast can collide with.

GameCamera (Camera) - This stores the 3D player’s camera.

InventoryItem (GameObject) - This is used to store the GameObject collided with by
the raycast.

LayerDefault (int) - This stores the index value of the layer of the item stored in
InventoryItem before it gets changed by the raycast.

PressE (GameObject) - This stores the PressE UI which appear on screen to let the
player know they can interact with an item.

CrossHair[] (GameObject) - This stores the different Cross Hair icons that the script
can swap between.

Cracks[] (Material) - This stores the different materials that the decal cracks can swap
to project.

Type (int) - This stores the type of object the collided object is.

DP (DecalProjector) - This is used to store the collided with Decal Crack’s Decal
Projector.

Set2D (bool) - This checks if the player is in 2D gameplay or not.

EndMarker and StartMarker (GameObject) - This stores the ending and starting
positions of the raycast, for debugging purposes.

CameraRaycast - Start() and Update():

 ()

 {

 (, , , ,);

 }

 ()

 {

 EndMarker.transform.localPosition (, , (range));

 RaycastHit hit;

// Start is called before the first frame update

//This start by setting the default cross hair icon.

// Update is called once per frame

//This casts a raycatst, which calls the functions of collided objects, based on the type of object
hit.

void

void

= new /

Start

SetCrossHair

Update

Vector3

true false false false false

0 0 10

51

 (Set2D)

 {

 (Physics. (GameCamera.transform.position, GameCamera.transform.forward, out hit, range,))

 {

 (hit.collider.tag)

 {

 (hit);

 }

 (hit.collider.tag)

 {

 Type ;

 PressE. ();

 hit.collider.gameObject. < >();

 .material Cracks[];

 }

 {

 ();

 }

 }

 {

 ();

 }

 Debug. (GameCamera.transform.position, GameCamera.transform.forward range, Color.green);

 }

 }

if ==

if

if ==

else if ==

=

=
=

else

else

*

false

LM

2
true

DP
DP 1

Raycast

HitInventory

SetActive
GetComponent DecalProjector

EndHighlight

EndHighlight

DrawRay

"InventoryItem"

"Crack"

//if the raycast stops colliding with a object, then it calls EndHighlight.

//This shows the length of the raycast in the Editor.

The Start() function works to set the Default CrossHair to be the one present, before
beginning the Update() function. The Update() function works to cast a raycast out,
which the game registers the collisions of (when the player isn’t in the 2D gameplay

mode). When colliding with an object, the script will check if it has either the
“InventoryItem” or “Crack” tags. If it has the former, then the HitInventory() function is
called, with the hit item being used for the calculations. If it hits the latter then that

means it is colliding with a decal crack, in which it will then swap the material of so that
the crack projection is highlighted. If it is hitting neither of these, or is not hitting
anything, then the EndHighlight() function is called to stop any previous collisions.

Finally, the Update() function create a debug line in the Editor to show the length of the
raycast.

CameraRaycast - HitInventory():
//This function checks what item has been hit by the raycast, and uses this to allow the player to interact with scripts attached to those items.

//The crosshair of the scene changes icon depending on the type of interaction.

//These items get highlighted via the CheckItem() function.

void

=
if !=

if !=

else if !=

 (RaycastHit hit)

{

 Type ;

 (hit.collider.gameObject. < >())

 {

 PressE. ();

 (hit,);

 (, , , ,);

 (InventoryItem)

 {

 InventoryItem. < >(). ();

 }

 }

 (hit.collider.gameObject. < >())

 {

 PressE. ();

 (hit,);

 (, , , ,);

HitInventory

GetComponent ItemPickup

SetActive
CheckItem

SetCrossHair

GetComponent ItemPickup EnterRay

GetComponent mouseclick

SetActive
CheckItem

SetCrossHair

1
null

true
1

false true false false false

null

null

true
2

false false true false false

52

 (InventoryItem)

 {

 InventoryItem. < >(). ();

 }

 }

 (hit.collider.gameObject. < >())

 {

 PressE. ();

 (hit,);

 }

 (hit.collider.gameObject. < >())

 {

 PressE. ();

 (hit,);

 (, , , ,);

 (InventoryItem)

 {

 InventoryItem. < >(). ();

 }

 }

 (hit.collider.gameObject. < >() hit.collider.gameObject. < >())

 {

 (hit,);

 (, , , ,);

 }

 (hit.collider.gameObject. < >())

 {

 PressE. ();

 (hit,);

 (, , , ,);

 (InventoryItem)

 {

 InventoryItem. < >(). ();

 }

 }

 (hit.collider.gameObject. < >())

 {

 (hit.collider.gameObject. < >().Grown)

 {

 PressE. ();

 (hit,);

 (, , , ,);

 (InventoryItem)

 {

 InventoryItem. < >(). ();

 }

 }

 (hit.collider.gameObject. < >().Grown)

 {

 (hit,);

 (, , , ,);

 }

 }

 (hit.collider.gameObject. < >())

 {

 PressE. ();

 (hit,);

 (, , , ,);

 (InventoryItem)

 {

 InventoryItem. < >(). ();

 }

 }

}

if !=

else if !=

else if !=

if !=

else if != || !=

else if !=

if !=

else if !=

if ==

if !=

else if ==

else if !=

if !=

null

null

true
2

null

true
2

true false false false false

null

null null

2
false false false true false

null

true
2

true false false false false

null

null

true

true
2

true false false false false
null

false

2
false false false false true

null

true
2

true false false false false
null

GetComponent mouseclick Place

GetComponent Projector

SetActive
CheckItem

GetComponent Notes

SetActive
CheckItem
SetCrossHair

GetComponent Notes PickUpNote

GetComponent RockHit GetComponent WaterBlock

CheckItem
SetCrossHair

GetComponent GiveRockAbility3D

SetActive
CheckItem
SetCrossHair

GetComponent GiveRockAbility3D TakeAbility

GetComponent TeleportPlant

GetComponent TeleportPlant

SetActive
CheckItem
SetCrossHair

GetComponent TeleportPlant PlantTeleport

GetComponent TeleportPlant

CheckItem
SetCrossHair

GetComponent StartTimeline

SetActive
CheckItem
SetCrossHair

GetComponent StartTimeline CallTimeline

The HitInventory() function is called when the raycast collides with an item that is
under the “InventoryItem” tag, and is used to call scripts attached to the collided

object, as well to highlight the item hit. The script does this by checking the
components attached to the hit item, and calls functions from the items for the player

to interact with. This is one of those functions that unfortunately has to be large in
order for it to work, but is actually quite simple in practise. The script highlights the hit

items using the CheckItem() function, and changes the icon of the cross hair using
SetCrossHair() depending on the item hit.

53

CameraRaycast - SetCrossHair(), EndHighlight() and
CheckItem():

 private (bool one, bool two, bool three, bool four, bool five)

 {

 CrossHair[]. (one);

 CrossHair[]. (two);

 CrossHair[]. (three);

 CrossHair[]. (four);

 CrossHair[]. (five);

 }

 ()

 {

 (Type)

 {

 :

 {

 (InventoryItem)

 {

 InventoryItem.layer LayerDefault;

 (, , , ,);

 }

 ()

 {

 .material Cracks[];

 ;

 }

 PressE. ();

 Type ;

 }

 ;

 :

 {

 (InventoryItem)

 {

 InventoryItem.layer LayerDefault;

 (, , , ,);

 }

 InventoryItem ;

 LayerDefault ;

 PressE. ();

 Type ;

 }

 ;

 :

 {

 .material Cracks[];

 ;

 PressE. ();

 Type ;

 }

 ;

 }

 }

 (RaycastHit Hit, int LNumber)

 {

 (InventoryItem)

 {

 InventoryItem Hit.collider.gameObject;

 LayerDefault InventoryItem.layer;

 InventoryItem.gameObject.layer LayerMask. ();

 }

 (Hit.collider.gameObject InventoryItem)

 {

 InventoryItem.layer LayerDefault;

 InventoryItem Hit.collider.gameObject;

 LayerDefault InventoryItem.layer;

 InventoryItem.gameObject.layer LayerMask. ();

 }

 }

//This function is used to set the icon of the cross hair depending on what the raycast hits.

//This function is called when the Raycast should stop hitting objects, and works to reset everything back to the ways they were before being hit.

//This function works to highlight the object hit by the raycast

//If the InventoryItem is null, then this stores the hit item as it.

//If the InventoryItem is not null, then the function returns the old InventoryItem to normal, before storing the new collision as the

InventoryItem.

void

void

switch

case

if !=

=

if !=

=
=

=

break
case

if !=

=

=
=

=

break
case

=
=

=

break

void

if ==

=
=

=

else if !=

=

=
=

=

SetCrossHair

SetActive
SetActive
SetActive
SetActive
SetActive

EndHighlight

SetCrossHair

SetActive

SetCrossHair

SetActive

SetActive

CheckItem

NameToLayer

NameToLayer

0
1
2
3
4

0

null

true false false false false

DP null

DP 0
DP null

false
0

1

null

true false false false false

null
0

false
0

2

DP 0
DP null

false
0

null

"ItemSelection"

"ItemSelection"

54

The SetCrossHair() function is used to quickly change the icon displayed on the cross
hair, and is done by storing bools when it is called, which are then set onto each of the
CrossHair icons. EndHighlight() is called when the raycast stops colliding with anything,
and works to reset everything collided with by the raycast back to normal. This takes in
the value of Type, so that it can tell what type of item has been collided with, and can
therefore only reset the necessary elements. The CheckItem() function is used to add

highlights to the collided item. It does this by setting the collided item as
InventoryItem, and changes the items layer to the “ItemSelection” layer, which

automatically adds a highlight around it. If the InventoryItem variable is null then this is
all it does, but if it has already got a value when the raycast collides, then the function

works to reset the old value before storing the variable with the new collision.

With the code for the 3D movement explained, I will now work to explain how the 3D
mechanics function. The first of these 3D mechanics is a 3D version of the rock ability,
which allows the player to throw out rocks which can knock over obstacles. This is done
via two scripts, RockThrow - which is the script which actually tosses out a rock, and
RockHit - which is attached to objects which are affected by the hit of the rock. So,

let’s start by looking at RockThrow.

RockThrow and RockHit:

RockThrow - Variables:
public :
{

 [SerializeField] CameraRaycast ;

 [SerializeField] float ;

 [SerializeField] float ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 [SerializeField] float ;

 [SerializeField] float ;

 [SerializeField] bool ;

 [SerializeField] TextMeshProUGUI ;

 [SerializeField] GameObject ;

 [SerializeField] AtariAblilitySave ;

 [SerializeField] audiomanager ;

 [SerializeField] VoiceActing ;

 [SerializeField] VoiceActing ;

 bool ;

class

public

RockThrow MonoBehaviour

//This script is used to throw out 3D rocks.

//This stores the CameraRaycast script

//These store the force at which the rock is thrown forward and up.

//This stores the Rock prefab that spawns the rock and the current rock spawned.

//These are used to create a cooldown for the rock after the player throws the rock.

//This displays the UI Timer that shows the cooldown

//This displays the icon that appears when the player can throw the rock

//This stores the AtariAbilitySave scriptable object.

//This stores the audiomanager script

//These are audio clips that get played when the player uses the ability.

//This tells the script if the player can throw the rock.

CR

throwforwardforce
throwupforce

RockIntance
CurrentRock

cooldownmax
currentcooldown

shot

Timer

CanUseSymbol

AAS

AM

KnockThingsOver
Oww

CanRock

55

The variables used for this script are as follows:

CR (CameraRaycast) - This variable stores the CameraRaycast gameobject.

throwforwardforce and throwupforce (float) - This stores the force at which the rock
is thrown both forward and upwards.

RockInstance and CurrentRock (GameObject) - This stores the prefab used to spawn
the rock, and the current instance of the rock.

cooldownmax, currentcooldown and shot (float and bool) - the float variables are
used to track the cooldown of the rock throw, being triggered to start after shot is set

true.

Timer and CanUseSymbol (TextMeshProUGUI and GameObject) - These variables are
used for the UI cooldown for the rock, with the Timer displaying the time left before
they can throw again, and the CanUseSymbol appearing when they can throw it again.

AAS and AM (AtariAbilitySave and audiomanager) - This stores the AtariAbilitySave
and audiomanager scripts.

KnockThingsOver and Oww (VoiceActing) - These variables store some Voice Acting
clips that play when the player throws a rock.

CanRock (bool) - This checks whether the player can shoot the rock or not.

RockThrow - Script:

 private ()

 {

 GameObject. (). < >();

 }

 private ()

 {

 (.tDRock CanRock)

 {

 (Input. (KeyCode.Mouse0) shot)

 {

 ();

 }

 (Input. (KeyCode.Mouse0) shot Oww)

 {

 Oww. ();

 }

 }

 }

 ()

 {

 ();

 (.tDRock CanRock)

 {

 (shot)

 {

 currentcooldown 0.1f;

 (currentcooldown cooldownmax)

 {

 shot ;

 currentcooldown ;

 }

 }

 }

 }

//This sets up the Audio Manager at the Start

// Update is called once per frame

//The Update() function checks whether the player is able to shoot rocks.

//If the player spams the left click then the Oww click plays.

//The Timer is called in the FixedUpdate() so its consistent.

void

=

void

if == && ==

if && ==

else if && == && !=

void

if == && ==

if ==

+=
if >=

=
=

Start

FindGameObjectWithTag GetComponent audiomanager

Update

GetKeyDown

Throw

GetKeyDown

AddLine

FixedUpdate

CooldownUI

AM

AAS true true

false

true null

AAS true true

true

false
0

"AControl"

56

 ()

 {

 .RockThrow. ();

 (KnockThingsOver)

 {

 KnockThingsOver. ();

 }

 (CurrentRock)

 {

 (CurrentRock);

 }

 GameObject Rock (RockIntance, .StartMarker.transform.position, .GameCamera.transform.rotation);

 Rock.transform.localScale RockIntance.transform.localScale;

 Vector3 ThrowForce .GameCamera.transform.forward throwforwardforce transform.up throwupforce;

 Rock. < >(). (ThrowForce, ForceMode.Impulse);

 CurrentRock Rock;

 shot ;

 }

 ()

 {

 CanUseSymbol. (shot);

 Timer.text Mathf. (currentcooldown 10f) 0.1f;

 }

//The throw function deletes the current rock in the scene, before spawning a new one in, which is from the StartMarker stored in the Camera
Raycast.

//This function is used to affect the Cooldown UI.

void

if !=

if !=

=

=

= * + *

=

=

void

!
= + * *

Throw

SetActive

AddLine

Destroy

Instantiate

GetComponent Rigidbody AddForce

CooldownUI

SetActive
Round

AM true
null

null

CR CR

CR

true

""

The Start() function for RockThrow is used to set up the value of AM. The Update()
function is where the player can throw the rock, assuming the ability is unlocked and
they aren’t in the cooldown period. If the player spams the throw button then the Oww
Voice Clip plays, to tell them to wait for the cooldown to end. The FixedUpdate() is

used to calculate the cooldown, and is used to call the CooldownUI() function, which is
used to affect the Cooldown UI. The Throw() function is where the rock gets spawned
and thrown. If a rock has already been stored in the scene, then it will be deleted, and a
new rock will be spawned and thrown forward from the CamerRaycast’s StartMarker.
After this the cooldown begins again, before the player is able to throw another rock.

RockHit - Variables:
public :
{

 [SerializeField] Animator ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 [SerializeField] GameObject[] ;

 [SerializeField] DecalDeath ;

 [SerializeField] DecalMovement ;

 [SerializeField] Camera ;

 [SerializeField] bool ;

 [SerializeField] Switch3D ;

 [SerializeField] VoiceActing ;

 [SerializeField] bool ;

class RockHit MonoBehaviour

//This script is used on objects which can be knocked over by the 3D Rock

//This stores the instances animator

//This checks if the object has been hit

//Some knocked over objects need to change the 2D platforms near them, and these one have this bool true.

//This stores the different start cracks swapped between after hitting the object.

//This stores the new Death trigger for the area

//This stores the 2D area's DecalMovement script

//This stores the scene's camera

//When this is true it means that the object's collider should turn to a trigger after being hit.

//This shows the object is a 3D switch

//This stores a voice acting line that will be played after the player hits the platform

//This bool is true when the 2D player is true, and is used to make sure the object doesn't get knocked over whilst the player is 2D.

ObjectAnim

BeenHit

Change2D

Cracks

Death

DM

SCamera

Triggerit

SthreeD

Line

Got2D

57

The variables for this script are as follows:

ObjectAnim (Animator) - This stores the animator for the knocked over object.

BeenHit and Change2D (bool) - The BeenHit bool is used to check whether the object
has already been knocked over, whilst Change2D is used to check whether the object

will change the 2D space after being knocked over.

Cracks[], Death, DM and SCamera (GameObject, DecalDeath, DecalMovement and
Camera) - These variables store elements which are changed in the 2D space after the

player knocks over the object.

Triggerit (bool) - If this bool is true, it means the objects collider will become a trigger
after being hit.

SthreeD (Switch3D) - This stores the switch3D script for if the object is instance of
that script.

Line (VoiceActing) - This stores a voice acting line which plays after the object is hit.

Got2D (bool) - This bool checks whether the player is currently in the 2D gameplay.

RockHit - Script:

//When hit by a rock the CollisionEnter() function causes the FallingDown() function to be called.

//If it is a 3D switch then it calls the Switch3D script's HitSwitch() function.

 ()

 {

 ()

 {

 Got2D ;

 }

 {

 Got2D .gameObject.activeSelf;

 }

 (collision.gameObject.tag)

 {

 (BeenHit Got2D)

 {

 BeenHit ;

 (SthreeD)

 {

 ();

 }

 {

 gameObject.tag ;

 SthreeD. ();

 }

 }

 }

 }

private void

if ==

=

else

=

if ==

if == && ==

=
if ==

else

=

OnCollisionEnter

Fallingdown

HitSwitch

Collision collision

DM null

false

DM

false false

true
null

"Rock"

"Untagged"

58

 ()

 {

 (Line)

 {

 Line. ();

 }

 gameObject.tag ;

 (Change2D)

 {

 ();

 }

 ObjectAnim. (,);

 (Triggerit)

 {

 gameObject. < >().isTrigger ;

 }

 }

 ()

 {

 Cracks[]. ();

 Cracks[]. ();

 . Death;

 .GameCamera SCamera;

 }

}

//This function plays the knocked over items animation, and if needed will change the 2D areas design.

//This function changes the 2D area that is assigned to the knocked over item.

public void

if !=

=
if ==

if ==

=

void

=
=

Fallingdown

AddLine

ChangeTrigger

SetBool

GetComponent BoxCollider

ChangeTrigger

SetActive
SetActive

false

true

true
true

true

0 false
1 true

DM DD
DM

"Untagged"

"Hit"

The OnCollisionEnter() function is used to check when the rock has collided with the
object. First, it checks whether the player is in the 2D gameplay or not, as the script will

not continue if the player is 2D. When hit, the function checks whether the object is a
3D switch or not. If it is, then the HitSwitch function from the Switch3D script is called.
If it is not, then the Fallingdown() function is called. This Fallingdown function works to

activate the animator for the object to produce the animation of the object falling over.
This function will also call the ChangeTrigger() function if the object will change the 2D

area, and can change the collision into a trigger, but only if the associated bools are
true. The ChangeTrigger() function works to swap things in the 2D space over to the
new design, so that the change in the objects position have consequences in the 2D

space.

The second ability unlocked in the 3D space is the Flower Gun, which allows the player
the ability to shoot pollen bullets that can be used to grow plants and hit objects. This
is done in a script named FlowerShoot - which I will not actually be showing here, as it
is practically identical to the RockThrow script, with the only difference being that it is
shooting a pollen bullet, which has no upward arc, and has a shorter cooldown. Since
those are the only differences, I will instead analyse the other scripts relating to this

ability. pollencollision is a script attached to the pollen bullets shot, and is used to keep
the bullet flying forward and check the collision around the object. TeleportPlant is the

script attached to objects that can be shot by the pollen bullets, and can grow vines
and plants which allow the player to teleport across the stage. These scripts are the

real core to the Flower Gun ability working well, and will be my key focus when looking
into this.

FlowerShoot, pollencollision and TeleportPlant:

59

The pollencollision script works to call the functions of objects that the bullet collides
with. There are only two varaibles, which both work to time how long the bullet has

been there, which are: 

currenttime and maxtime (float) - When currenttime equals more then maxtime the
bullet instance is destroyed. This is done so the scene isn’t overloaded by bullets.

The addTime() function is used to calculate the time the bullet has been spawned for,
and is called from the FixedUpdate() function to keep it consistent. The main bit of

pollencollision - Script:
public :
{

 float ;

 [SerializeField] float 50f;

 ()

 {

 ();

 }

 ()

 {

 (collision.gameObject.tag)

 {

 (collision.gameObject. < >())

 {

 (collision.gameObject. < >().Grown)

 {

 collision.gameObject. < >(). ();

 }

 }

 (collision.gameObject. < >())

 {

 collision.gameObject. < >(). ();

 }

 (gameObject);

 }

 {

 (gameObject);

 }

 }

 ()

 {

 (currenttime maxtime)

 {

 (gameObject);

 }

 {

 currenttime 0.1f;

 }

 }

}

class

public
=

private void

private void

if ==

if !=

if ==

if !=

else

public void

if >=

else

+=

pollencollision MonoBehaviour

FixedUpdate

addTime

OnCollisionEnter

GetComponent TeleportPlant

GetComponent TeleportPlant

GetComponent TeleportPlant GrowPlant

GetComponent Switch3D

GetComponent Switch3D HitSwitch

Destroy

Destroy

addTime

Destroy

//This script is used to check the collision of the pullet bullets spawned by the 3D Flower gun.

//These variables are used to give a time limit before the bullets delete themselves.

//The FixedUpdate() calls the calculation of the timer for this bullet.

//When hitting an object the bullet will destroy itself whilst checking what type of object it hid.

//This function is used to delete the bullet instance after a certain amount of time.

currenttime
maxtime

Collision collision

"InventoryItem"

null

false

null

60

code for this script is found in the OnCollisionEnter() function, which activates the
functions of objects hit by the bullet, much like how HitInventory() works in the

CameraRaycast script - and after doing this the instance of the bullet deletes itself.

This script is used on plants that can be affected by the pollen bullet, and was
originally only made for plants that teleport the player, but eventually adapted to be
able to affect other types of plants aswell. The variables for this script are as follows:

SwapObject[] (GameObject) - This array of objects works to swap the objects of the
plant once shot by the pollen.

Grown (bool) - This bool works to check if the vine has already been grown.

TeleportPlant - Script:
public :
{

 [SerializeField] GameObject[] ;

 bool ;

 [SerializeField] GameObject ;

 [SerializeField] Animator ;

 [SerializeField] Vector3 ;

 [SerializeField] Quaternion ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 ()

 {

 (Vine)

 {

 SwapObject[]. ();

 SwapObject[]. ();

 SwapObject[]. ();

 gameObject. ();

 }

 (Vine)

 {

 SwapObject[]. ();

 gameObject. ();

 }

 }

 ()

 {

 (Input. (KeyCode.) Teleporting)

 {

 Teleporting ;

 (());

 }

 }

 IEnumerator ()

 {

 Fade. (,);

 (1f);

 Player.transform.position NewPos;

 Player.transform.rotation NewRot;

 Fade. (,);

 Teleporting ;

 }

}

class

public

public void

if ==

else if ==

public void

if && ==

=

yield return new
=
=

=

TeleportPlant MonoBehaviour

GrowPlant

SetActive
SetActive
SetActive

SetActive

SetActive
SetActive

PlantTeleport

GetKey

StartCoroutine TeleportPlayer

TeleportPlayer

SetBool
WaitForSecondsRealtime

SetBool

//This script is placed on objects that are affected by the 3D pollen bullets

//This stores the different objects that get swapped by the bullet

//This bool is set to true if the object is a Teleport plant, and makes it so the plant cannot grow again once hit.

//These store the 3D player and Fade UI, for when the player teleports

//These store the new position and rotation of the player after telelporting.

//This bool is set to true whilst the player is teleporting

//This bool, when true, means it is a vine which can be grown using the same script.

//This function is called when either a sprout or vine gets hit by the pollen bullet.

//If it is a sprout, then that means the object will grow into a teleport plant, which allows the player to teleport between areas.

//If it is a vine, then that means the object will swap to a different vine size.

//If the player interacts with the TeleportPlant, then they can be teleported.

//This IEnumerator works to warp the player to a new location.

SwapObject

Grown

Player
Fade

NewPos
NewRot

Teleporting

Vine

false

0 true
1 true
2 false

false

true

0 true
false

E false

true

true

false
false

"Fade"

"Fade"

61

Player and Fade (GameObject and Animator) - These store the 3D Player and the Fade
UI for when the player teleports.

NewPos and NewRot (Vector3 and Quaternion) - These store the values of the location
the player warps to with the teleport plant.

Teleporting and Vine (bool) - The Teleporting bool is used to stop the player from
teleporting again whilst they are currently teleporting. The Vine bool, when true, means

that the object is a vine which changes size after being shot.

This script is made of several functions, two of which can be called by the player. The
first, GrowPlant() can be called by the player’s pollen bullet, and grows whatever plant it
hits. If the object is not a vine, that that means it is a sprout for a teleport plant, and
deactivates itself to instead activate the grown version of itself. If it is a Vine then that

means all it does is deactivate itself to activate a different sized vine.

The PlantTeleport() function can be called by the CameraRaycast, and when interacted
with can teleport the player over to a different location. This is done via the

TeleportPlayer() IEnumerator, which adds the fade UI to the screen before moving the
player to the location stored in NewPos and NewRot.

With the 3D abilities described, there needed to be scripts to actually activate these
abilities and allow the player to swap between them. The GiveRockAbility3D script was
originally made to only activate the 3D Rock ability, but was eventually changed to also
be able to give the 3D Flower ability. Once the player has both abilities, the SwapThrow

script then allows the player to swap between their throw types by pressing the
escape key. This section will explain each of these scripts and how they work to help

provide the abilities.

GiveRockAbility3D and SwapThrow:

public :
{

 [SerializeField] Transform ;

 [SerializeField] AtariAblilitySave ;

 [SerializeField] GameObject ;

 [SerializeField] DecalTextAppear ;

 [SerializeField] bool ;

 [SerializeField] VoiceActing ;

 ()

 {

 (ItemType)

 {

 RockUI. ();

 }

 gameObject. < >();

 }

class

void

if ==

=

GiveRockAbility3D MonoBehaviour

Start

SetActive

GetComponent Transform

//This script works to activate either the 3D Rock or 3D Flower abilities.

//This stores the Transform of the object that this script is attached to

//This stores the AtariAbilitySave script

//This stores the 3D Rock abilities UI.

//This stores some tutorial text which fades on screen after the player unlocks the ability.

//This stores what ability gets awakened.

//This stores a voice acting clip that plays after the player unlocks the ability.

// Start is called before the first frame update

//The start() funtion works to set up the itemtype, and to see what type of UI needs to be shown

T

AAS

RockUI

DTA

ItemType

GainAbility

false

false

T

62

// Update is called once per frame

//The Update() Function is used to make the object that activates the ability spin around.

//When the item is picked up by the player it will activate whichever ability the instance is there to awake.

 ()

 {

 . (, 0.3f,);

 }

 ()

 {

 (Input. (KeyCode.))

 {

 (ItemType)

 {

 :

 {

 .tDRock ;

 RockUI. ();

 .SetOn ;

 (GainAbility)

 {

 GainAbility. ();

 }

 (gameObject);

 }

 ;

 :

 {

 .FlowerGun ;

 .SetOn ;

 (gameObject);

 }

 ;

 }

 }

 }

}

void

public void

if

switch

case

=

=
if !=

break
case

=
=

break

Update

Rotate

TakeAbility

GetKey

SetActive

AddLine

Destroy

Destroy

T 0 0

E

false

AAS true
true

DTA true
null

true

AAS true
DTA true

This script has several variables set to help it activate the 3D abilities, being:

T (Transform) - This stores the Transform of the gameObject.

AAS (AtariAbilitySave) - This stores the AtariAbilitySave scriptable object, of which the
abilities are able to be activated in.

RockUI (GameObject) - This stores the UI for the rock ability which activates when the
player unlocks the 3D rock ability.

DTA (DecalTextAppear) - This stores a decal tutorial which fades on screen when the
player picks up the ability.

ItemType (bool) - This bool, when false means that the ability gained is the 3D rock
ability, and when true is the 3D Flower Gun.

GainAbility (VoiceActing) - This stores a voice clip that plays when the player unlocks
the ability.

The Start() and Update() functions for this script both have simple purposes. The
Start() function works to make sure the RockUI is deactivated at the start of the game,

whilst the Update() function works to make the instance of this script rotate on the
spot, just to make it more enticing to collect by the player.

The main function for this script is TakeAbility(), which can be called by the
CameraRaycast script, and is what gives the player their abilities. This function checks

63

what ability needs to be given, and then gives the needed ability. This works to be quite
easy to use for multiple abilities, and easily allows the player to unlock new abilities.

SwapThrow - Script:
public :
{

 [SerializeField] AtariAblilitySave ;

 [SerializeField] bool ;

 [SerializeField] RockThrow ;

 [SerializeField] FlowerShoot ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 ()

 {

 Rock ;

 .CanShoot ;

 .CanRock ;

 FlowerGun. ();

 FlowerUI. ();

 }

 ()

 {

 (Input. (KeyCode.Mouse1) .FlowerGun)

 {

 Rock (Rock);

 (Rock)

 {

 :

 {

 .CanRock ;

 RockUI. ();

 .CanShoot ;

 FlowerUI. ();

 FlowerGun. ();

 }

 ;

 :

 {

 .CanShoot ;

 FlowerUI. ();

 FlowerGun. ();

 .CanRock ;

 RockUI. ();

 }

 ;

 }

 }

 }

}

class

void

=
=

=

void

if && ==

= !

switch

case

=

=

break

case

=

=

break

SwapThrow MonoBehaviour

Start

SetActive
SetActive

Update

GetKeyDown

SetActive

SetActive
SetActive

SetActive
SetActive

SetActive

//This script is used for the player to swap between the 3D Rock and 3D Flower abilities.

//This stores the AtariAbilitySave scriptable objects, so that the script can check when the two 3D abilities are unlocked.

//This bool is used to check if the rock is selected or not

//This stores the UI for the two 3D abilties, and the 3D FlowerGun to activate and deactivate.

// Start is called before the first frame update

//The start function sets things up so the Rock is the first one playable by the player

// Update is called once per frame

//The Update() function checks when the player presses the Right click

//When pressed the current active ability is swapped.

//When Rock is true, then the Rock ability is activated.

//When Rock is false, then the Flower Gun ability is activated.

AAS

Rock
RT

FS

RockUI
FlowerUI
FlowerGun

true
FS false
RT true

false
false

AAS true

true

RT true
true

FS false
false
false

false

FS true
true
true

RT false
false

64

The SwapThrow script is used to swap between the 3D flower and 3D Rock ability. The
variables are as follows:

AAS (AtariAbilitySave) - This stores the AtariAbilitySave scriptable object, which is
used to check when both abilities are active.

Rock, RT and FS (bool, RockThrow and FlowerShoot) - The Rock bool is used to swap
between the two abilities, which are stored in RT and FS.

RockUI, FlowerUI and FlowerGun (GameObject) - The UI GameObjects are used to
store the UI for the different abilities, whilst FlowerGun is used to store the 3D

FlowerGun model that appears when the player uses the gun.

The Start() function is used to initiate things so that the Rock ability is always the first
active. The actual swapping of the ability is done within the Update() function, where

the value of Rock is inverted when the player presses the Right Click. The current ability
is then activated based on the value of rock. When it’s true the 3D rock ability is the

one active, with the appropriate UI shown. When it’s false then things swap over to the
3D Flower ability, with the UI and 3D model displaying.

65

Dialogue, Timelines and Voice Acting:
This section of the document is here to discuss elements of the game which are

needed to help tell the narrative, from the Dialogue system to the Notes, Cutscenes
and Voice Acting. These all use similar scripts to each other, and can be easily

compared, with the scripts for each type tying into each other well. So, let’s start by
discussing the code for the Dialogue System.

These two scripts are small but important in setting up the Dialogue system. The
Dialogue script creates a class that is used to create a variable in TriggerDialogue,

which stores every line of Dialogue in a sequence. Both of these scripts are incredibly
tiny, and only consist of one function, if that. So, let’s look at them.

This script creates a class which, stores three variables, which are:

Name[] (string) - This stores an array of different names of the character speaking in
Dialogue sequences.

Sentances[] (string) - This stores an array of the lines said in the Dialogue sequence.

tag (string) - This stores a tag that can cause different effects at the end of Dialogue
sequences.

Dialogue and TriggerDialogue:

Dialogue - Script:

TriggerDialogue - Script:

[System.Serializable]

public
{

 string[] ;

 string[] ;

 string ;

}

class

public

public

public

Dialogue

//This class stores the three variables used for dialogue:

 Name, which stores the name of who's speaking;

 Sentances which stores the dialogue said;

 Tag, which stores the tag used to trigger events at the end of the dialogue

Name

Sentances

tag

public :
{

 Dialogue ;

 [SerializeField] Dialogue_Manager ;

 [SerializeField] TimelineManager ;

class

public

TriggerDialogue MonoBehaviour

//This script is used to attatch a dialogue variable to a gameobject

D

DI_M
TM

66

 ()

 {

 ()

 {

 . ();

 .pause ;

 .Dialogue ;

 }

 }

}

public void

if !=

=
=

CallD

StartDialogue

DI_M null

DI_M D
TM true
TM true

This script is used to trigger Dialogue sequences, and has three simple variables:

D (Dialogue) - This stores the values used for the Dialogue System.

DI_M and TM (Dialogue_Manager and TimelineManager) - These variables are used to
store the Dialogue_Manager and TimelineManager scripts.

This script only has one function, CallD(), which is called by other scripts when they
want to start a Dialogue sequence. This script does what it says, it calls the Dialogue

Manager and plays the Dialogue stored in D. This script also works to pause the
Timeline that may be playing a cutscene, until the Dialogue sequence is complete.

Dialogue_Manager:
With the two preliminary scripts discussed, this section of the script will be about the

main Dialogue_Manager script, which takes the information called by the
TriggerDialogue script, and creates a Dialogue sequence out of it. So let’s jump in, and

look at the script’s variables.

The variables for this script are as follows:

Sentance<>, Names<> and TextTag (string) - These string queue’s store the Sentances
and Names provided by the called Dialogue variable, and the TextTag string which

stores the Tag for the dialogue sequence.

Dialogue_Manager - Variables:
public :
{

 Queue string ;

 Queue string ;

 string ;

 [SerializeField]TextMeshProUGUI ;

 Animator ;

 DecalMovement ;

 Mega_Man_Movement ;

 bool ;

 [SerializeField] GameObject ;

 [SerializeField] audiomanager ;

class

private < >
private < >
public

public

public
public

public

Dialogue_Manager MonoBehaviour

//This script is used to create Dialogue sequences within the game.

//This script stores Queues of each Sentance and Name listed in the Dialogue sequence.

//These store the aspects of the text UI on screen, such as the text itself and the animator for the text for it to slide on screen.

//This stores whatever 2D player is active during the Dialogue sequence.

//This bool is set to true whilst the game is in a Dialogue sequence.

//This stores a GameObject that has DecalText which fade onto the scene.

//This stores the audiomanager to create a satisfying sound when the player clicks between lines.

Sentance
Names

TextTag

Dialogue
Anim

DM
MMM

inD

FadeMove

AM

67

Sentance<>, Names<> and TextTag (string) - These string queue’s store the Sentances
and Names provided by the called Dialogue variable, and the TextTag string which

stores the Tag for the dialogue sequence.

Dialogue and Anim (TextMeshProUGUI and Animator) - These store elements of
displaying the text, and the animator for the text, so that the Dialogue box fades onto

screen.

DM and MMM (Decal_Movement and Mega_Man_Movement) - This stores the 2D
Player type in the scene the Dialogue sequence.

inD (bool) - This bool is set to true when the player is in a Dialogue sequence.

FadeMove (GameObject) - This stores the GameObject of decal text that can fade on
screen.

AM (audiomanager) - This stores the audiomanager script.

Dialogue_Manager - Script:

 ()

 {

 GameObject. (). < >();

 Sentance < >();

 Names < >();

 }

 ()

 {

 (inD Input. (KeyCode.Mouse0))

 {

 ();

 }

 }

 public (Dialogue)

 {

 Sentance. ();

 Names. ();

 Anim. (,);

 ()

 {

 .isMove ;

 .CutsceneJump ;

 }

 ()

 {

 .isMove ;

 .CanShoot ;

 }

 TextTag .tag;

 inD ;

 (string .Sentances)

 {

 Sentance. ();

 }

 (string .Name)

 {

 Names. ();

 }

// Start is called before the first frame update

//The start function starts by setting up the Sentance and Names queue

// Update is called once per frame

//The Update() function works to call the DisplayNextSentance() function when the player left clicks

//This function is called to set up the dialogue, setting the Names and Sentances into queues, which is used in later functions

//The function freezes the movement of the 2D Player during the function

//The function uses foreach loops to add to the Sentance and Names queues.

void

=

= new
= new

void

if == &&

void

if !=

=
=

if !=

=
=

=

=

in

in

Start

FindGameObjectWithTag GetComponent audiomanager

Queue
Queue

Update

GetKeyDown

DisplayNextSentance

StartDialogue

Clear
Clear

SetBool

foreach

Enqueue

foreach

Enqueue

AM

string
string

true

D

true

DM null

DM false
DM true

MMM null

MMM false
MMM false

D

true

S D

S

N D

N

"AControl"

"Open"

68

 ();

 }

 public ()

 {

 .Dialogue. ();

 .Dialogue. < >(). ();

 (Sentance.Count)

 {

 ();

 }

 {

 string sentance Sentance. ();

 string name Names. ();

 ();

 ((name, sentance));

 }

 }

 IEnumerator (string , string)

 {

 Dialogue.text ;

 (char letter . ())

 {

 Dialogue.text letter;

 (0.03f);

 }

 }

 ()

 {

 Anim. (,);

 (TextTag)

 {

 .isMove ;

 .CutsceneJump ;

 ;

 inD ;

 (FadeMove. < >(). ());

 }

 (TextTag)

 {

 .isMove ;

 .CutsceneJump ;

 inD ;

 ;

 }

 (TextTag)

 {

 .isMove ;

 .CanShoot ;

 ;

 }

 TextTag ;

 inD ;

 ;

 }

}

//The function ends by typing the first sentance in the DisplayNextSentance() function

//This function works to begin typing the next line of dialogue

//The function checks if there are any sentances left to type, and if not EndDialogue is called.

//The function stores the next line of dialogue and stops all Coroutines, before calling the Type Sentance Coroutine

//This works to type the current sentance out char by char.

//This function ends the dialogue scene, and will trigger events based on the instance's Tag.

//This function completes different functions after the dialogue sequence is complete, before setting the player movement back to normal

DisplayNextSentance

DisplayNextSentance

SetActive
GetComponent AudioSource Play

EndDialogue

Dequeue
Dequeue

StopAllCoroutines
StartCoroutine TypeSentance

TypeSentance

foreach ToCharArray

WaitForSeconds

EndDialogue

SetBool

StartCoroutine GetComponent DecalTextAppear Fadein

void

if ==

else

=
=

= +

in

+=
yield return new

void

if ==

=
=

=
=

if ==

=
=

=
=

if ==

=
=

=

=

=
return

AM true
AM

0

N S

N

S

false

DM true
DM false
DM null

false

DM true
DM false

false
DM null

MMM true
MMM true
MMM null

null

false

": "

"Open"

"F"

"S"

"M"

This script is made of several different functions which all tie together. The Start()
function is used to set up the Sentance and Names queues. The Update() function is
used to type the next sentence of the Dialogue. The StartDialogue() function is called
by other scripts when setting up the Dialogue system, which pauses the 2D player’s
movement to start the Dialogue sequence. It then stores each Name and Sentence
listen in the given Dialogue class into Names and Sentences, using the foreach loop.

The setup ends by calling the DisplayNextSentance() function to display the first line of
dialogue.

The DisplayNextSentance() function checks whether their are any sentences left in the
Dialogue sequence, and if not, the function calls the EndDialogue() function. If there are

69

any sentences left, the function takes the next line of Dialogue and displays it using the
TypeSentance() IEnumerator, which types the sentence out letter by letter. Finally, the
EndDialogue() function moves the Dialogue UI off screen, and gives the 2D player
movement again. It also completes any functions called by the Tag of the Dialogue
sequences, to cause different effects, such as having Decal Text appear when the

dialogue is complete.

With the Dialogue system explained, I will now turn my attention to the Timeline
system. Timelines are used in my game to create cutscenes, which involve several

different Dialogue sequences called after each other. This is done within the
TimelineManager script, which works to create effective cutscenes out of the timeline.
These Timelines are called from the StartTimeline script, which is attached to areas

where Timelines can start. So, let’s have a look at these scripts.

TimelineManager and StartTimeline:

TimelineManager - Script:
public :
{

 PlayableDirector ;

 bool ;

 bool ;

 bool ;

 [SerializeField] Dialogue_Manager ;

 ()

 {

 (play)

 {

 play ;

 ();

 }

 (pause)

 {

 pause ;

 ();

 }

 (Dialogue)

 {

 (.inD)

 {

 Dialogue ;

 play ;

 }

 }

 }

 ()

 {

 PlayD. ();

 }

 ()

 {

 PlayD. ();

 }

}

class

public

public
public
public

private void

if ==

=

if ==

=

if ==

if ==

=
=

public void

public void

TimelineManager MonoBehaviour

Update

Play

Pause

Play

Play

Pause

Pause

//This script is used to manage timelines in the game to create cutscenes.

//This stores the Playable Director which contains the Timeline sequence.

//These bools are used to check if the timeline is paused, playing or in a Dialogue sequence.

//This stores the Dialogue_Mangager script.

//The update() function checks whether the play, pause or Dialogue bools are true, and calls the appropriate functions based on this.

//When in Dialogue, the Timeline will not continue until the current Dialogue sequenece is complete.

//This function plays the Timeline

//This function pauses the Timeline.

PlayD

play
pause
Dialogue

DI_M

true

false

true

false

true

DI_M false

false
true

70

The TimelineManager script is short and effective, using a few variables to get things
set up. These variables are as follows:

PlayD (PlayableDirector) - This stores the Playable Director which plays the Timeline.

play, pause, Dialogue (bool) - These bools are used to check if the Timeline sequence
is playing, paused or in a Dialogue sequence.

DI_M (Dialogue_Manager) - This stores the Dialogue_Manager script.

The Update() function checks the current values of play, pause and Dialogue. If play is
true, then the Play() function is called, which plays the Timeline. If pause is true then
the Pause() function is called, which pauses the Timeline. When Dialogue is true, the
Timeline will remain paused until the current Dialogue sequence is complete. This

simple function works well to create cutscenes which flow perfectly, regardless of the
length of the sequence.

StartTimeline - Script:

public :
{

 [SerializeField] GameObject ;

 [SerializeField] TimelineManager ;

 [SerializeField] bool ;

 [SerializeField] int ;

 [SerializeField] DecalMovement ;

 [SerializeField] Dialogue ;

 [SerializeField] Dialogue_Manager ;

 [SerializeField] DecalTextAppear ;

 ()

 {

 (Input. (KeyCode.) playing)

 {

 PressE. ();

 playing ;

 . ();

 gameObject.tag ;

 }

 }

class

public void

if && ==

=

=

StartTimeline MonoBehaviour

CallTimeline

GetKey

SetActive

Play

//This script is used to start a Timeline sequence

//This stores the PressE UI Pop-up

//This stores the TimelineManager script for the cutscene called

//This bool is true whilst the Timeline is playing

//This int stores if the player has been talked to already

//This stores the 2D players movement

//This is used to call the first Dialogue sequence of the Timeline

//This stores the Decal Text that appears because of the Timeline.

//CallTimeline() is called when the player presses E whilst triggering with the script

//This function plays the Timeline.

PressE

TM

playing

talked

DM

D
DIM

Decal

E false

false
true

TM
"Untagged"

71

 ()

 {

 (playing)

 {

 PressE. ();

 }

 }

 ()

 {

 (other.gameObject.tag)

 {

 (Input. (KeyCode.) playing)

 {

 PressE. ();

 playing ;

 (talked)

 {

 talked ;

 .play ;

 .isMove ;

 .CutsceneJump ;

 }

 }

 }

 }

 ()

 {

 (other.tag)

 {

 PressE. ();

 }

 }

 ()

 {

 .CutsceneJump ;

 .isMove ;

 (Decal. ());

 }

}

private void

if ==

private void

if ==

if && ==

=

if ==

=
=

=
=

private void

if ==

public void

=
=

OnTriggerEnter

SetActive

OnTriggerStay

GetKey

SetActive

OnTriggerExit

SetActive

EndTimeline

StartCoroutine Fadein

Collider other

Collider other

Collider other

false

true

E false

false
true

0

1
TM true
DM false
DM true

false

DM false
DM true

"Player"

"Player"

//This checks if the player has already experienced the Timeline sequence.

//This function ends the timeline, and is called at the end of the timeline sequence.

This script is used to call the Timeline, and has several variables for this:

PressE and TM (GameObject, TimelineManager) - This stores the Press E UI pop-up
and the TimelineManager script.

playing and talked (bool and int) - The playing bool is set to true when the player is in
a Timeline sequence and the talked int stores whether the player has already been

through the Timeline before.

DM, D and DIM (DecalMovement, Dialogue and Dialogue_Manager) - These sets of Ds
store the Atari Player’s movement so it can stop moving at the start of the timeline, the

first set of Dialogue for the Timeline which is then called into the Dialogue_Manager
script.

Decal (DecalTextAppear) - This stores a piece of decal text which appears during the
Timeline.

72

This script is made to call the selected Timeline when the CallTimeline() function is called by
the player pressing the E key within the script’s trigger. When calling the timeline, the script
will check if the player has already interacted with it once, in which case it will create a new
timeline for the situation. The only other function of note is EndTimeline() which is called from

within the Timeline itself to get the player back to being able to move.

The next system to be discussed here are the note objects that are collectable to the
player. These objects are found in instances of the Notes script, which when collected
display a note on screen, through the NoteParent script. Using this allows me to easily
add extra narrative and lore to the game, without much worry. So, lets look at the first

of these scripts.

Notes and NoteParent:

Notes - Script:public :
{

 [SerializeField] string ;

 [SerializeField] string ;

 [SerializeField] NoteParent ;

 [SerializeField]bool ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 ()

 {

 (Input. (KeyCode.))

 {

 .NoteText.text NoteText;

 .FileName.text FileName;

 . (,);

 (gameObject);

 }

 }

 ()

 {

 (flat)

 {

 (other.gameObject.tag)

 {

 PressE. ();

 other.gameObject;

 (Input. (KeyCode.))

 {

 .gameObject. < >().isMove ;

 .NoteText.text NoteText;

 .FileName.text FileName;

 . (,);

 PressE. ();

 (gameObject);

 }

 }

 }

 }

 ()

 {

 (other.gameObject.tag)

 {

 PressE. ();

 ;

 }

 }

}

class

public void

if

=
=

private void

if ==

if ==

=
if

=
=
=

private void

if ==

=

Notes MonoBehaviour

PickUpNote

GetKey

Set
Destroy

OnTriggerStay

SetActive

GetKey

GetComponent DecalMovement

Set
SetActive

Destroy

OnTriggerExit

SetActive

//This script is used when calling Notes to be displayed to the player

//These strings store the text and name of the Note

//This stores the NoteParent script

//When this bool is true it means the note is located in the 2D space.

//This stores the PressE Pop-up

//This stores the gameobject that triggers the note.

//This function is called by the camera raycast to display a note UI.

//This function is allows the player to display the note when pressing E within the 2D space's trigger.

//When exiting the trigger the value of P and PressE are reset.

NoteText
FileName

NP

flat

PressE

P

Collider other

Collider other

E

NP
NP
NP false null

true

true
P

E

P false
NP
NP
NP true P

false

false
P null

"Player"

"Player"

73

This script is used for instances of the notes which the player can collect. It has several
variables which are sent to the NotesParent script to call the Note item. These variables

are:

NoteText and FileName (string) - These store the text of the note and the Name of it’s
file.

NP (NoteParent) - This stores the NoteParent script, which these values are sent to.

flat (bool) - This bool is set to true when the note is collected in the 2D space.

PressE (GameObject) - This is the Press E pop up that appears when the player
triggers with the note.

P (GameObject) - This stores the instance of the 2D player that interacts with the note.

This script works to provide the values of it’s instance to the NoteParent script when
the player interacts with it, whether this is done via the PickUpNote() function (which is
called by the CameraRaycast) or the Trigger collision, either way, this gameObject will

get the text it has stored to appear on screen before deleting the gameObject.

NoteParent - Script:
public :
{

 TextMeshProUGUI ;

 TextMeshProUGUI ;

 bool ;

 [SerializeField] Animator ;

 [SerializeField] FPS_Movement ;

 [SerializeField] bool ;

 [SerializeField] GameObject ;

 [SerializeField] audiomanager ;

 ()

 {

 GameObject. (). < >();

 }

class

public
public

public

private void

=

NoteParent MonoBehaviour

Start

FindGameObjectWithTag GetComponent audiomanager

//This script is used as the parent for the Note objects the player can pick up.

//This stores the text and title for the note item

//This bool is true when the note should be set on screen.

//This stores the animator for the Note UO

//This stores the First Person movement

//This bool is true if the note displayed was taken from the 2D space.

//This stores the instnace of the player that interacts with the note

//This stores the audiomanager script.

//The start function sets up the audiomanager.

NoteText
FileName

SetNote

Anim

FPSM

flat

P

AM

AM "AControl"

74

private void

if ==

if

=

if ==

=

else

=
=

public void

if !=

=

=
if ==

=

=

 ()

 {

 (SetNote)

 {

 (Input. (KeyCode.Mouse0))

 {

 .Dialogue. ();

 .Dialogue. < >(). ();

 Anim. (,);

 SetNote ;

 (flat)

 {

 .CanMove ;

 }

 {

 .gameObject. < >().isMove ;

 ;

 }

 }

 }

 }

 (,)

 {

 (g)

 {

 g;

 }

 flat f;

 (flat)

 {

 .CanMove ;

 }

 Anim. (,);

 SetNote ;

 }

}

Update

GetKey

SetActive
GetComponent AudioSource Play

SetBool

GetComponent DecalMovement

Set

SetBool

//if the note is set on screen and the played left clicks then the note will leave the screen.

//Once the note leaves this function provides movement back to the player that picked it up.

//This function is called by the Notes script, and displays the picked up note on screen.

true

AM true
AM

false
false

false

FPSM true

P true
P null

null

P

false

FPSM false

true
true

"EnterScreen"

"EnterScreen"

bool f GameObject g

This NoteParent script takes the values stored by the Notes instance and uses it to
present the Note UI. The variables are as follows:

NoteText and FileName (TextMeshProUGUI) - These are the text components that
display the text stored in the Notes instance.

SetNote (bool) - This bool is set to true when the note has been displayed on screen.

Anim and FPSM (Animator and FPS_Movement) - This stores the animator of the
Notes UI that animates onto screen. FPSM is used to store the First Person player’s

script.

flat, P and AM (bool, GameObject and audiomanager) - The flat and P variables are set
based on the Notes instance, and store if the note was collected in the 2D space. AM

also stores the audiomanager, like many other scripts.

75

The NoteParent scripts sets a note onto the screen when the Set function is called by
the Notes script, which displays the Note UI on screen with the text stored in the Notes
instance. When the note is on screen the Update() function will remove the Note from
screen after the player left clicks next. It then grants movement back to the player,

whether 2D or 3D.

The next system to discuss is that of adding Voice Acting to the game. This was done
via two scripts, VoiceActing which adds a voice clip to a list stored in the

VoiceActingManager script, which actually plays the audio out loud. These scripts are
quite simple, so let’s get right to it.

The VoiceActing script works to add audio clips to the list stored in
VoiceActingManager, and has the following variables:

VAM (VoiceActingManager) - This stores the VoiceActingManager that plays all the
clips.

sentance and Line (string and AudioClip) - These variables store the voice clip that
plays, and a text version of what is said is stored in sentance.

triggered (bool) - This bool is used to check when the player has entered the script’s
trigger.

VoiceActing and VoiceActingManager:

VoiceActing - Script:
public :
{

 [SerializeField] VoiceActingManager ;

 [SerializeField] string ;

 [SerializeField] AudioClip ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 ()

 {

 GameObject. (). < >();

 }

 ()

 {

 (triggered)

 {

 triggered ;

 ();

 }

 }

 ()

 {

 . (Line, sentance, Skip);

 (Keep)

 {

 (gameObject);

 }

 }

}

class

private void

=

private void

if ==

=

public void

if ==

VoiceActing MonoBehaviour

Start

FindGameObjectWithTag GetComponent VoiceActingManager

OnTriggerEnter

AddLine

AddLine

AddLine

Destroy

//This script is used to play Voice lines in the scene

//This variables stores the VoiceActingManager script

//This stores the string of the sentance said by the voice clip played

//This stores the actual voice line played.

//This bool is set to true when the voice clip is triggered.

//These bools decide whether the voice clip should skip to the newest clip, or for the clip to not delete itself.

//When entering the trigger the script calls the AddLine() function

//This function can be called by triggers or other scripts, and adds the Voice Clip to the list in the VoiceActingManager script.

VAM

sentance

Line

triggered

Skip
Keep

Collider other

VAM

false

true

VAM
false

"AControl"

76

Skip and Keep (bool) - These bools are used to set values of the voice clip. If Skip is
true it means the clip is played straight away, and is Keep is true it means the instance

does not get deleted after being played.

This script works by adding the information of the instance to the VoiceActingManager
when the AddLine() function is called, whether in trigger or from another script. This
function adds the audio clip stored in line, and all necessary information, into the lists
stored in VoiceActingManager. If the Keep variable is false, then the instance gets

deleted.

VoiceActingManager - Script:
public :
{

 List AudioClip ;

 List string ;

 [SerializeField] AudioSource ;

 [SerializeField] bool ;

 [SerializeField] TextMeshProUGUI ;

 [SerializeField] bool ;

 ()

 {

 (Playing)

 {

 (.isPlaying Skip)

 {

 (Lines.Count)

 {

 .clip Lines[];

 Dialogue.text Sentance[];

 Lines. ();

 Sentance. ();

 . ();

 }

 {

 Dialogue.text ;

 .clip ;

 Playing ;

 }

 Skip ;

 }

 }

 }

 (, ,)

 {

 (skip)

 {

 :

 {

 Lines. ();

 Sentance. ();

 Lines. ();

 Sentance. ();

class

public < >
public < >

private void

if ==

if != || ==

if >

=
=

else

=
=
=

=

public void

switch

case

VoiceActingManager MonoBehaviour

FixedUpdate

RemoveAt
RemoveAt

Play

AddLine

Clear
Clear

Add
Add

//This stores List of the AudioClips that play for the Voice Acting and the text that the character is saying.

//This stores the AudioSource that plays the Voice clips

//This bool is set true when the audio clip is playing

//This is the Text for the Text for the Voice Acting

//If required, a voice clip can skip right to the newest line.

//The FixedUpdate is used to check when an voice clip has ended, and whether a new line needs to be played.

//This function is called by the VoiceActing script, and adds the set Voice clip to the list of voice clips.

//When the voice clip is needed to skip then the audio list skips straight to the newly added voice line.

Lines
Sentance

AS

Playing

Dialogue

Skip

AudioClip AC string S bool skip

true

AS true true

0

AS 0
0

0
0

AS

null
AS null

false

false

true

AC
S

77

 Playing ;

 Skip ;

 }

 ;

 :

 {

 Lines. ();

 Sentance. ();

 Playing ;

 }

 ;

 }

 }

}

=
=

break
case

=

break

true
true

false

AC
S

true

Add
Add

The VoiceActingManager script is used to play out any audio clips of voice acting
stored by the VoiceActing script. It takes the variables given to it and use them to

affect the variables of this script, which are:

Lines<> and Sentance<> (AudioClip and string) - These are lists which store every
audioclip and piece of text that needs to be presented by the script.

AS (AudioSource) - This is the audio source which plays the Voice clips stored in Lines.

Playing (bool) - This bool is set to true when the audio clips are being played.

Dialogue (TextMeshProUGUI) - This is a Text component which displays the dialogue
said by the voice clip.

Skip (bool) - When this bool is true the added audio clip is skipped to straight away.

This script works when audio clips in the List are played. These lists get added to in the
AddLine() function, which adds the values taken from Voice Acting instances to the list,
for them to be played. If Skip is true, then the lists are cleared, and the most recent
audio clip is immediately played. The FixedUpdate() then checks to see when the

currently playing audio clip has finished playing, and deletes it and plays the next clip. If
there are no more clips to play, then Playing is set to false.

RandomWait and audiomanager:
The final scripts to be discussed in this section of the document are those used to

manage the final bits of audio in the game. The first is a small script called
RandomWait, which plays random voice clips when the player stands in one spot for
too long, whilst the other is used to manage the general audio of the game, such as

sound effects and background music. So let’s start looking at them.

RandomWait - Script:
public :
{

 [SerializeField] FPS_Movement ;

 [SerializeField] VoiceActing[] ;

class RandomWait MonoBehaviour

//This function is used to play a random Voice clip when the player stands still for too long.

//This takes the 3D player's script to check how long they have been standing still for.

//This stores and array of VoiceActing which are randomely chosen from

FPSM

VA

78

 [SerializeField] float ;

 [SerializeField] float ;

 ()

 {

 (.moving .gameObject.activeSelf)

 {

 (currentwait waitmax)

 {

 currentwait ;

 int arraynum Random. (,);

 [arraynum]. ();

 }

 {

 currentwait 0.1f;

 }

 }

 {

 currentwait ;

 }

 }

}

//This stores the timings of the wait.

//The FixedUpdate() waits for the player to stand still long enough before playing one of the voice clips at random.

waitmax
currentwait

private void

if == && ==

if >=

=
=

else

+=

else

=

FixedUpdate

Range
AddLine

FPSM false FPSM true

0
0 2

VA

0

This script has a few variables to get the random voice clip system working correctly,
which are:

FPSM (FPS_Movement) - This is the 3D Player’s movement and is used to check the
time that the player has been standing still for.

VA[] (VoiceActing) - This stores an array of the Voice Acting clips that can be played
when waiting a while.

waitmax and currentwait (float) - These store the current time the player has been
standing still for, and the max time spent waiting.

These variables are then used in the FixedUpdate() function, which plays the voice clip
after not moving for a good while, and only whilst the 3D player is active. This is all this

script does, and it works effectively, randomly selecting a voice clip to play after
waiting too long.

audiomanager - Script:
public :
{

 [SerializeField] AudioSource ;

 [SerializeField] AudioClip[] ;

 [SerializeField] string[] ;

 [SerializeField] int ;

 [SerializeField] int ;

 [SerializeField] Animator ;

 [SerializeField] TextMeshProUGUI ;

class audiomanager MonoBehaviour

//This script is used to manage the audio of the game.

//This is the audiosource for the background music

//This is an array of songs that the game swaps between after a song ends

//This stores the titles of all these songs.

//This stores the current number of song played, and the total song count

//This is the name of the song credit which displays on screen when a new song plays

Music

Songs

SongTitle

SongNumber
TotalSongs

NameDisplayer
NameText

79

 bool ;

 GameObject ;

 GameObject ;

 GameObject ;

 GameObject ;

 GameObject ;

 GameObject ;

 GameObject ;

 GameObject ;

 GameObject ;

 GameObject ;

 [SerializeField] bool ;

 ()

 {

 TotalSongs Songs.Length ;

 ();

 }

 ()

 {

 (Music.gameObject.activeSelf)

 {

 (Input. (KeyCode.))

 {

 swapsong ;

 }

 (Music.isPlaying swapsong)

 {

 swapsong ;

 (SongNumber);

 }

 }

 WalkingObject. (Walking);

 (Grab.activeSelf Grab. < >().isPlaying)

 {

 Grab. ();

 }

 (Place.activeSelf Place. < >().isPlaying)

 {

 Place. ();

 }

 (RockPlace.activeSelf RockPlace. < >().isPlaying)

 {

 RockPlace. ();

 }

 (RockDirection.activeSelf RockDirection. < >().isPlaying)

 {

 RockDirection. ();

 }

 (RockThrow.activeSelf RockThrow. < >().isPlaying)

 {

 RockThrow. ();

 }

//This bool checks if the player is moving

//These are the sound effects played by the game.

//This bool is true when it is time to swap to a new song.

// Start is called before the first frame update

//The start function stores the total count of the songs to play before playing the first song

// Update is called once per frame

//The Update() function waits for the current song to stop playing befor eit swaps to a new song, or if
the player presses P

//The footsteps sound effect is effected by if the player is walking or not.

//Every other audio clip is activated by other scripts that want to play the song.

public

public
public
public
public
public
public
public
public
public
public

void

= -

void

if !=

if

=

if ! || ==

=
+=

if == && !

if == && !

if == && !

if == && !

if == && !

Walking

Grab
WalkingObject
Place
RockPlace
RockDirection
RockThrow
Jump
Crack
Dialogue
Projector

swapsong

Start

ChangeSong

Update

GetKeyDown

ChangeSong

SetActive

GetComponent AudioSource

SetActive

GetComponent AudioSource

SetActive

GetComponent AudioSource

SetActive

GetComponent AudioSource

SetActive

GetComponent AudioSource

SetActive

1
0

false

P

true

true

false
1

true

false

true

false

true

false

true

false

true

false

80

 (Jump.activeSelf Jump. < >().isPlaying)

 {

 Jump. ();

 }

 (Crack.activeSelf Crack. < >().isPlaying)

 {

 Crack. ();

 }

 (Projector.activeSelf Projector. < >().isPlaying)

 {

 Projector. ();

 }

 (Dialogue.activeSelf Dialogue. < >().isPlaying)

 {

 Dialogue. ();

 }

 }

 ()

 {

 Music. ();

 (Number TotalSongs)

 {

 SongNumber ;

 }

 {

 SongNumber Number;

 }

 Music.clip Songs[SongNumber];

 Music. ();

 (());

 }

 IEnumerator ()

 {

 NameText.text SongTitle[SongNumber];

 NameDisplayer. (,);

 (5f);

 NameDisplayer. (,);

 }

}

if == && !

if == && !

if == && !

if == && !

public void

if >

=

else

=

=

public

=

yield return new

true

false

true

false

true

false

true

false

0

true

false

GetComponent AudioSource

SetActive

GetComponent AudioSource

SetActive

GetComponent AudioSource

SetActive

GetComponent AudioSource

SetActive

ChangeSong

Pause

Play
StartCoroutine SongNameShow

SongNameShow

SetBool
WaitForSeconds

SetBool

//This function is called to swap the currently played song

//This has a UI popup appear showing the credit behind the playing song.

int Number

"Show"

"Show"

This is the script used to manage the audio within the scene, and as such has several
audio clips attached to it as a variable. These variables are as follows:

Music (AudioSource) - This is the Audiosource that plays the game’s music.

Songs[] and SongTitle[] (AudioClip and string) - These are two arrays, the first stores
the song files for the game, and the second stores the title and composer for the

songs.

SongNumber and TotalSongs (int) - These int store the current array number of the
Songs array is playing, and calculates the total length of the array.

NameDisplayer and NameText (Animator and NameText) - This stores the animator
used to move the text showing the title of the song onto the screen.

81

Walking (bool) - This bool stores if the 3D player is currently moving or not, and is used
to activate the footsteps sound effects.

Grab, WalkingObject, Place, RockPlace, RockDirection, RockThrow, Jump, Crack,
Dialogue and Projector (GameObjects) - These gameobjects all store the

audiosources for sound effects in the game.

swapsong (bool) - This bool forcibly swaps over the song playing.

The start() function for this script is used to calculate the total amount of songs to
swap between, before it calls the ChangeSong() function to play the first song. The

Update() function is then used to check whether the current song has stopped playing
(or if the player has pressed the P key) so that the script can swap to a new song, using

the ChangeSong() function. The Update() function then keeps the footsteps sound
effect active based on if the 3D player is moving or not. The rest of the Update()

function is used for the other sound effects, each of which only play when called by the
appropriate script.

The ChangeSong() function works to change the song currently playing, pausing the
music currently playing beforehand. The song will either swap to the next in the array,
or, if the current song is the last in the list, will go back to the first song in the list, and
will play the song. When a song plays, the SongNameShow() IEnumerator plays, which
has some text move on screen to show the credit behind the currently playing song.
This script works well to effectively manage the non-voice acting related audio in the

game, and is very effective.

82

Inventory and UI:
This section of the document is reserved for the game’s Inventory System, which is a
large system incorporating several scripts to get things working. This system involves
large pieces of UI that appear on screen to show the items the player is holding, so as
such this section of the document will also work to explain the remaining pieces of UI in
the game not discussed in any of the other sections. So, let’s start looking at these

scripts.

Each Inventory item collected by the player is stored as an ItemClass variable, which is
stored within the Inventory script. The Inventory script allows the player to swap

between items stored in the Inventory, and is called to open the Inventory. So, let’s look
at these scripts.

This script creates a new Variable class which is used to store the values of the items
picked up by the player. The variables it stores within the class are as follows:

ItemName (string) - This stores the name of the item stored.

ItemIcon (Sprite) - This stores the icon that appears in the inventory items when this
item is held.

ItemGameobject (GameObject) - This stores the in game item that is picked up by
the player.

This class works well to easily allow for storage of the information crucial for the
Inventory to work. The Inventory system is very specific about what names items are
stored as, as the name is used to check if the item can be placed in item placing spots.

This is used in the game for some puzzles, and gives a good flow to the gameplay.

ItemClass and Inventory:

ItemClass - Script:
[.]

{

 ;

 ;

 ;

}

System Serializable
public

string ItemName
Sprite ItemIcon
GameObject ItemGameobject

class

public
public
public

ItemClass

//This creates a class to store the variables stored in inventory items

83

Inventory - Variables, Start() and Update():
public

List ItemClass Items

int InventoryCount

int CurrentInventory

SerializeField GameObject AnimObject

SerializeField ButtonLocation BL

SerializeField GameObject Button

AnimObject BubbleItem Items CurrentInventory

AnimObject BubbleItem Items CurrentInventory
InventoryCount Items Count

Vector2 MouseScroll Input mouseScrollDelta
float MouseScrolly MouseScroll y

Input KeyCode LeftBracket MouseScrolly

Input KeyCode RightBracket MouseScrolly

 :
{

 < > ;

 ;

 ;

 [] ;

 [] ;

 [] ;

 ()

 {

 . < >(). = [];

 }

 ()

 {

 . < >(). = [];

 = . ;

 = . ;

 = . ;

 (. (.) || <)

 {

 ();

 }

 (. (.) || >)

 {

 ();

 }

 }

class

public

public

public

void

void

false

true

Inventory MonoBehaviour

InventoryElement

InventoryElement

//This script is used to store the items of the inventory that the player is holding

//This stores a List of every item in the inventory

//This stores the size of the list of Inventory Items

//This stores which element of the Items List is currently selected

//This stores the Animation for the Current item icon

//This stores the ButtonLocation script

//This stores the Button prefab used to open the menu

// Start is called before the first frame update

//this sets the icon of the current item to be that which is held currently by the player

// Update is called once per frame

//This script is used to store the inventory and what item is currently being held

//The script takes in the mouse scroll data to quickly swap between inventory items

//The player can either press the square brackets or the mouse scroll to swap between inventory items

Start

GetComponent

Update

GetComponent

GetKeyDown

ChangeNumber

GetKeyDown

ChangeNumber

if

else if

0

0

The Inventory item takes in the information of items picked up by the player, and
displays them on screen via the inventory menu. The variables used for this are as

follows:

Items<> (ItemClass) - This List of the ItemClass variable stores every item picked by
the player. It will always have the “NoItem” variable stored within it, for when the player

isn’t holding anything.

InventoryCount and CurrentInventory (int) - These ints store the max size of the
inventory, as well as the value for the current inventory item held by the player.

84

AnimObject (GameObject) - This stores the GameObject for the Inventory icon
showing the currently held item. This originally animated into the UI which is why its

called AnimObject.

BL (ButtonLocation) - This stores the ButtonLocation script, which is used to open up
the Inventory menu.

Button (GameObject) - This stores the Button prefab used to create the items in the
Inventory Menu when it’s opened.

The Start() function works to set the value of the item shown in AnimObject as the first
in the list. The value of the item shown in AnimObject gets updated each frame in the
Update() function, which sets it to the current inventory item held by the player. The
game takes in the input of the player, using either the square brackets or the mouse
scroll, to go up or down the list of inventory items, by calling the ChangeNumber()

function.

Inventory - OpenInventoryB() and ChangeNumber():

 ()

 {

 ()

 {

 :

 {

 = ;

 ()

 {

 . . ((, . . < >(). , . . < >().));

 . []. < >(). (. . < >(),);

 . []. < >(). = . . < >(). ;

 . []. . < >(). = [];

 . []. . < >(). = ;

 += ;

 }

 . = ;

 }

 ;

 :

 {

 . = ;

 }

 ;

 }

 }

 ()

 {

 ()

 {

 :

 {

 (== (-))

 {

 = ;

 }

 {

 += ;

 }

 }

 ;

 :

 {

 (==)

 {

 = (-);

 }

 {

 -= ;

 }

 }

 ;

 }

 }

//When the inventory is opened by the 3D player the script makes a Inventory Item button for each element stored in the inventory, and adds it to an list stored in the

ButtonLocation script.

//When this function is called to close the inventory the ButtonLocation script is called to close the inventory

//This function is used to add or decrease the value of the inventory, so the player can swap between items

public bool open

open

int Count

ItemClass Items

Buttons Button DefaultPos position DefaultPos rotation

Buttons Count gameObject

Buttons Count localScale InventoryItem localScale

Buttons Count gameObject BubbleItem Items Count

Buttons Count gameObject InventoryNumber Count

Count

Move

Move

bool Up

Up

CurrentInventory InventoryCount

CurrentInventory

CurrentInventory

CurrentInventory

CurrentInventory InventoryCount

CurrentInventory

void

true

in

true

false

void

true

false

OpenInventoryB

foreach

Add Instantiate GetComponent GetComponent

GetComponent SetParent GetComponent

GetComponent GetComponent

GetComponent

GetComponent

ChangeNumber

switch

case

break

case

break

switch

case

if

else

break

case

if

else

break

0

1

1

4

1

0

1

0

1

1

I

BL BL BL

BL BL

BL BL

BL

BL

BL

BL

RectTransform RectTransform

RectTransform RectTransform

RectTransform RectTransform

ButtonInstance

ButtonInstance

85

The OpenInventoryB() function is called by the 3D player in order to open the
inventory. Initially, this function opened a huge menu where the player slowly swapped
from each item in the list, but this was updated to instead open a menu of buttons the

player can easily click to select what item they wish to hold. This is now done by
instantiating instances of the prefab stored in Button, with each displaying and storing
the values of each item stored in the inventory, which get added to the List of buttons
in the ButtonLocation script. If the player presses to close the inventory, then the script
sets the ButtonLocation script to the settings to close the menu. The ChangeNumber()
function is called to change what item in the inventory is currently being held. When
the player moves the list up it will either add 1 to the value of CurrentInventory or, if the
player is at the end of the list already, the script will go back to the start of the list.

When going down the list the opposite of this is done, with the value of
CurrentInventory either being subtracted by 1 or is sent to the max count of the

inventory. This Inventory system has been well refined to create a simple and easy to
use inventory menu, which I am very proud of.

These scripts are all important for displaying the information stored in the Inventory to
the player, each working to keep the game flowing well. The ButtonInstance and

InventoryElement scripts both work to display information stored in the Inventory to
the player on icons in the UI, with the ButtonInstance working to display it in buttons in
the Inventory menu, whilst InventoryElement is used to display it on the Inventory Icon
that displays throughout gameplay. The Inventory Menu itself is opened when the

Inventory script calls the ButtonLocation script, which creates a list of buttons that the
player can press to hold a different item. So, let’s start looking at these scripts.

ButtonInstance, InventoryElement and
ButtonLocation:

ButtonInstance - Script:
public

ItemClass BubbleItem
Image Icon
TextMeshProUGUI Name

SerializeField Inventory I
SerializeField ButtonLocation Bl

int InventoryNumber

GameObject
Bl GameObject

Items InventoryNumber ItemName

Icon gameObject
Icon sprite Items InventoryNumber ItemIcon

 :
{

 ;

 ;

 ;

 [] ;

 [] ;

 ;

 ()

 {

 = . (). < >();

 = . (). < >();

 }

 ()

 {

 (. []. !=)

 {

 . . ();

 . = . []. ;

 }

class

public
public
public

public

void

void

true

ButtonInstance MonoBehaviour

Inventory
ButtonLocation

//This is used to store values to the instances of the Inventory Buttons, giving the player the stored item when clicked on

//These are used to display the information stored in the ItemClass variable for the object.

//These store the Iventory and ButtonLocation scripts

//This stores what value of the Inventory list that this item is at.

// Start is called before the first frame update

//The Start() function attaches the Inventory and ButtonLocation script to their variables.

// Update is called once per frame

//The Update() function works to display the values stored in the variables to the button

Start

FindGameObjectWithTag GetComponent
FindGameObjectWithTag GetComponent

Update

SetActive

I

I

I

"Inventory"
"Button"

"No Item"if

86

else

 {

 . . ();

 }

 . = . []. ;

 }

 ()

 {

 . = ;

 }

}

//If the Item is "No Item" then that means no icon is displayed

//When the player clicks the button, the value of the Inventory script's CurrentInventory is set to the InventoryNumber stored in the instance.

Icon gameObject

Name text Items InventoryNumber ItemName

CurrentInventory InventoryNumber

SetActive

ClickInventory

false

public void

I

I

The ButtonInstance script works to store the data from each item in the Inventory to a
button that can be pressed by the player in the Inventory Menu, with the data for each
instance being stored by the Inventory script when calling the Inventory Menu. The

variables for this script are:

BubbleItem, Icon, Name (ItemClass, Image, TextMeshProUGUI) - These variables work
to display all the information stored within the ItemClass variable attached to this

instance.

I and BL (Inventory and ButtonLocation) - These variables store the Inventory and
ButtonLocation scripts respectively.

InventoryNumber (int) - This stores what number of the Inventory item list in the
Inventory script this item is representing is.

This script works to set display the icon and name associated with the stored Inventory
item onto the button’s design. If the item held is the “No Item”, then no icon will be
displayed. The item this instance of the script then serves as a button, which when
pressed sets the current item held by the inventory to be whatever value of the

ItemClass item stored on the button currently is in the Inventory script. This works well
to easily make interactable buttons within the Inventory menu.

InventoryElement - Script:
public

ItemClass BubbleItem
Image Icon
TextMeshProUGUI Name

SerializeField Inventory I

Items CurrentInventory ItemName

Icon gameObject
Icon sprite Items CurrentInventory ItemIcon

Icon gameObject

Name text Items CurrentInventory ItemName

 :
{

 ;

 ;

 ;

 [] ;

 ()

 {

 (. [.]. !=)

 {

 . . ();

 . = . [.]. ;

 }

 {

 . . ();

 }

 . = . [.]. ;

 }

}

class

public
public
public

void

true

false

InventoryElement MonoBehaviour

//This script is used to store the information stored in the currently held Inventory Item

//This stores the data displayed by the currently held inventory item

//This stores the Inventory script.

// Update is called once per frame

//This script works to present the icon and data for the currently held inventory item

Update

SetActive

SetActive

if

else

I I

I I

I I

"No Item"

87

The InventoryElement is designed to fulfil a purpose almost identical to that of the
ButtonInstance script, though instead of showing an item assigned to it by the Inventoy
script, the script works to show the item that is currently held by the player, based off
the value of the CurrentInventory int. This script only works to show this item during
gameplay, when the player isn’t in the Inventory menu, and is updated as the game

progresses. This script also doesn’t work as a button, so it only serves to be looked at,
not interacted with.

ButtonLocation - Variables, Start() and Update():
 :
{

 < > ;

 [] ;

 ;

 [] ;

 [] ;

 ;

 [] ;

 ;

 [] ;

 [] ;

 ()

 {

 . ();

 }

 ()

 {

 ()

 {

 :

 {

 . ();

 . ();

 = ;

 ()

 {

 += ;

 }

 = ;

 }

 ;

 :

 {

 ();

 }

 ;

 :

 {

 ();

 }

 ;

 :

 {

 . = . ;

 . = ;

 . = ;

 . ();

public

List GameObject Buttons

GameObject ButtonPos

int Move

SerializeField int BCount

SerializeField float Movespeed

GameObject DefaultPos

SerializeField FPS_Movement FPSM

GameObject InventoryItem

SerializeField GameObject Close

SerializeField GameObject CR

Close

Move

InventoryItem
Close
BCount

GameObject Buttons

BCount

Move

BCount

BCount

Cursor lockState CursorLockMode Locked
Cursor visible

CanMove

class

public

public

public

public

public

void

false

void

false
true

in

false
true

true

ButtonLocation MonoBehaviour

//This script is used to store the positions and list for each button presented in the Inventory Menu when it's open.

//This stores a List of each button in the menu

//This stores the position that each button needs to move towards

//This is used to call how the buttons should move

//This stores the number of buttons present in the List.

//This stores the speed at which the buttons should move

//This stores the defualt position the buttons should move back to

//This stores the 3D Player

//This stores the InventoryItem that appears on screen when the Inventory menu isn't open

//This stores the Text that displays telling the player how to close the menu

//This stores the CrossHairs in the game

// Start is called before the first frame update

//The start function starts by making sure the Inventory text is not active.

// Update is called once per frame

//The FixedUpdate() is used to check where in the movement process the menu is at

//When Move is 1 it means the menu was just opened, it works to count each item stored in the list

//When Move is 2 it means the buttons are moving over the scene

//When Move is 4 it means the buttons are moving back to close the menu

//When Move is 5 it sets up the game to go back to movement, with the menu being reset and closed

Start

SetActive

FixedUpdate

SetActive
SetActive

foreach

MoveButtons

MoveButtonsBack

SetActive

switch

case

break
case

break
case

break
case

1

0

1

2

2

4

5

G

FPSM
CR

88

 (. >)

 {

 ()

 {

 ();

 }

 . ();

 }

 . ();

 . ();

 = ;

 . = ;

 }

 ;

 }

 }

if

break

Buttons Count

GameObject Buttons

Buttons

InventoryItem
Close
Move

PressI

0

0

foreach

Destroy

Clear

SetActive
SetActive

G

G

FPSM

in

true
false

true

The ButtonLocation script is used to move UI buttons for the Inventory menu on and
off the screen. This script, has the following variables, which are called by the Inventory

script:

Buttons<> (GameObject) - This list stores each of the UI buttons used for the Inventory
menu.

ButtonPos[] (GameObject) - This array of GameObjects store the positions that the
items in the Buttons list need to move towards.

Move and BCount (int) - The Move int is used to register what stage of movement the
buttons are at, whilst BCount stores the number of buttons listed in the Buttons list.

Movespeed (float) - This stores the speed at which the buttons should move on
screen.

DefaultPos (GameObject) - This stores the default positions that the buttons move
back to when the Inventory menu is closed.

InventoryItem, Close, CR (GameObject) - These store the the Inventory icon, Inventory
Menu text, and game’s cross hair in GameObjects to activated and deactivated as the

menu opens and closes.

The FixedUpdate() is where the script takes in the value of the Move int, and uses that
to determine what phase of opening the Inventory menu currently is at. When Move is 1,

that means the menu is being set up, and the function works to count how many
buttons are stored in the Buttons list, putting this value into the BCount variable. It then

changes the value of Move to 2. When Move is 2, that means the buttons are moving
into their places on screen, and the MoveButtons() function is called. When the value of
move is 4 that means the buttons need to move back to their starting position so the
menu can close, using the MoveButtonsBack() function. When Move is 5, that means

the menu is closing, and the script sets the game back so the player can continue
moving, and clearing the values of the Buttons list, so that it is ready for the Inventory

to be open again.

89

ButtonLocation - MoveButtons() and MoveButtonsBack():
 ()

 {

 (= ; < ; ++)

 {

 (>)

 {

 []. < >(). = . ([]. < >(). , []. < >(). ,);

 }

 }

 = -= ;

 ([]. < >(). == []. < >(). || . ==)

 {

 = ;

 }

 }

 ()

 {

 (= ; < ; ++)

 {

 (>)

 {

 []. < >(). = . ([]. < >(). , . < >(). ,);

 }

 }

 = -= ;

 ([]. < >(). == . < >(). || . ==)

 {

 = ;

 }

 }

}

void

void

MoveButtons

GetComponent MoveTowards GetComponent GetComponent

GetComponent GetComponent

MoveButtonsBack

GetComponent MoveTowards GetComponent GetComponent

GetComponent GetComponent

int bCount

int i i bCount i

i

Buttons i localPosition Vector3 Buttons i localPosition ButtonPos i localPosition Movespeed

int value bCount
Buttons value localPosition ButtonPos value localPosition Buttons Count

Move

int bCount

int i i bCount i

i

Buttons i localPosition Vector3 Buttons i localPosition DefaultPos localPosition Movespeed

int value bCount
Buttons value localPosition DefaultPos localPosition Buttons Count

Move

//This function moves each button towards their position one at a time. When the furthest button reaches its position it means the movement is complete

//This function moves each button back towards the start when the menu is being closed, when the furtherst button reaches the start position it means the menu has been closed.

for

if

if

for

if

if

0

0

1
1

3

0

0

1
1

5

RectTransform RectTransform RectTransform

RectTransform RectTransform

RectTransform RectTransform RectTransform

RectTransform RectTransform

The MoveButtons() and MoveButtonsBack() functions achieve practically the same
thing, just in opposite ways. MoveButtons() works to move the UI Buttons for the

Inventory Menu into place, registering that they have completed their job when the
further button reaches their position. The MoveButtonsBack() function does the

opposite thing, moving all the UI Buttons back to the start position when the Inventory
menu needs to close, registering it as complete when the further button reaches the

start point, at which it is registered that the menu is closed. This script works to make a
really simple and efficient menu for the Inventory, and makes gameplay work really

smoothly.

With the Inventory system explained, I will now explain how the player is able to add
items to their inventory, using the ItemPickup script to add items to the list stored in

the Inventory script. These inventory items are then able to be placed using the
mouseclick script, which allows the player to place items down at certain spots,

assuming the player is placing an appropriate item. Finally, the Vine script works to
have the place inventory items effect the 2D space near where they were placed.

These scripts are quite important, so lets start looking at them.

ItemPickup, mouseclick and Vine:

ItemPickup - Script:
public

SerializeField ItemClass Item

SerializeField Inventory I

SerializeField GameObject Object

SerializeField GameObject PressE

SerializeField audiomanager AM

 :
{

 [] ;

 [] ;

 [] ;

 [] ;

 [] ;

class ItemPickup MonoBehaviour

//This script is used to pick up items to add them to the player's inventory

//This stores the ItemClass variable fo the item picekd up

//This stores the Inventory script

//This stores the Inventory object in the scene

//This stores the PressE pop up

//This stores the audio manager script.

90

// Start is called before the first frame update

//This script is used to pick up items from the scene and add them to the inventory

//When the raycast collides with the item it allows the player to add the item to their inventory by pressing E, which removes the item from the scene

 and adds it to their inventory.

 ()

 {

 = . (). < >();

 }

 ()

 {

 . ();

 . ();

 (. (.))

 {

 (. ==)

 {

 . . ();

 . . < >(). ();

 . . ();

 . ();

 . ();

 }

 }

 }

void

public void

true

true

true

false

false

Start

FindGameObjectWithTag GetComponent

EnterRay

SetActive

Log

GetKey

SetActive

GetComponent Play

Add

SetActive

SetActive

AM

E

AM

AM

I

GameObject

PressE

Debug

Input KeyCode

Object activeSelf

Grab

Grab

Items Item

Object

PressE

"AControl"

"TriggeredWithItem"

audiomanager

AudioSource

if

if

This script is small, and works to add whatever ItemClass variable is stored to it into the
list in the Inventory script. The scripts variables are as follows:

Item (ItemClass) - This stores the Item which the player picks up when interacting with
this item.

I and Object (Inventory and GameObject) - These store the Inventory script and the
GameObject in the scene which is picked up by this script.

PressE and AM (GameObject and audiomanager) - This stores the Press E pop-up and
the audiomanager script.

The function of this script is called by the EnterRay() function, which is called when the
Camera’s Raycast collides with this script. This function, when the player presses E,

adds the stored Inventory item to the Inventory scripts Items list, before removing the
gameobject from the scene. It is short and effective, easily allowing for new inventory

items to be placed in the scene.
mouseclick - Variables, Start() and Place():

public

SerializeField GameObject AppearObjects
SerializeField ItemClass AppearNames

SerializeField ItemClass TempItem

SerializeField bool Clicked

SerializeField bool DoEvent

SerializeField Inventory I
SerializeField audiomanager AM
SerializeField InventoryElement IB

SerializeField VoiceActing Nothingtoplace

GameObject
GameObject AppearObjects

 :
{

 [] [] ;

 [] [] ;

 [] ;

 [] ;

 [] ;

 [] ;

 [] ;

 [] ;

 [] ;

 ()

 {

 = . (). < >();

 ()

 {

 . ();

 }

class

void

in

false

mouseclick MonoBehaviour

audiomanager

//This script is used to place items stored in the Inventory down into the scene.

//These store the object and name of the item that can be placed.

//This stores the ItemClass variable for the item placed in the scene.

//this checks if an item has already been placed in the area.

//This bool is set to true when an item is being placed or removed, so the player can't

//These store the scripts needed for placing these items down

//This audio clip plays if the player trys to place items when they aren't holding anything

// Start is called before the first frame update

//The start function sets things up so none of the AppearItems are active during the start.

Start

FindGameObjectWithTag GetComponent
foreach

SetActive

AM
I

I

"AControl"

91

}

 ()

 {

 (. (.))

 {

 . . ();

 . . < >(). ();

 (== && ==)

 {

 ();

 }

 (== && ==)

 {

 ();

 }

 }

 }

public void

true

false false

true false

Place

GetKeyDown

SetActive
GetComponent Play

GiveVine

TakeVine

//This function is called by the camera Raycast, and allows the player to either add or remove an inventory item in the space.

if

if

else if

Input KeyCode

Place
Place

Clicked DoEvent

Clicked DoEvent

E

AM
AM AudioSource

This script is used to place items held by the player down into the scene. It originally did this by
having the player actually click to place things via the mouse, but this was eventually changed to be

done via the camera raycast instead. the variables for this script are as follows: 

AppearObject[] and AppearNames[] (GameObject and ItemClass) - These arrays are used to store
the items that can be placed by the player, as well as the names that items placed need to have in

order to be placed.

TempItem (ItemClass) - This stores the ItemClass value for the item placed in the spot.

Clicked and DoEvent (bool) - The clicked bool is use to check if an item has already been placed in
the spot or not, and the DoEvent bool is called when an item is being placed or removed, so the

player can’t spam the function.

I, AM, IB (Inventory, audiomanager and InventoryElement) - these variables store the scripts needed
for the item to be placed in the spot.

Nothingtoplace (VoiceActing) - This voice clip is played when the player tries to place an item down
with nothing in their inventory.

The Start() function is used to set up the placed items, making sure each is deactivated at the start of
the game. Items can be placed and removed via the Place() function, which is called by the

CameraRaycast when it collides with the placement point. When the player presses E whilst the spot
is looked at, the player can add their inventory item down or take back a placed inventory item. This is

done via the GiveVine() and TakeVine() functions, which add and remove items to the spot
respectively.

mouseclick - GiveVine(), TakeVine() and DeleteItem():
 ()

 {

 = ;

 = ;

 (. . >)

 {

 ()

 {

 (. . == [].)

 {

 . ();

 = [];

 = !();

 = ;

 = ;

 }

void

false

in

true

true
true

GiveVine

foreach

SetActive

//This function checks what item the player is trying to place compared to the items that can be placed.

//If the player can place the item then it will added to the scene

int Count
bool Delete

Items Count

GameObject AppearObjects

BubbleItem ItemName AppearNames Count ItemName

TempItem AppearNames Count
Clicked Clicked
DoEvent
Delete

0

1if

if

I

I

IB

I

92

 {

 . ();

 }

 += ;

 }

 (==)

 {

 . = ;

 ();

 }

 = ;

 }

 {

 . ();

 }

 }

 ()

 {

 = ;

 []. ();

 []. ();

 []. ();

 . . ();

 = ;

 = ;

 = ;

 }

 ()

 {

 = ;

 = ;

 = ;

 (.)

 {

 (. == .)

 {

 = ;

 = ;

 }

 += ;

 }

 (==)

 {

 . . (. []);

 }

 }

else

if

else

if

if

I

I

I

IT I

IT

I I

SetActive

DeleteItem

AddLine

TakeVine

SetActive
SetActive
SetActive

Add

DeleteItem

foreach

Remove

false

true

false

void

true
false
false
false

null
false
false

void

false
in

true

true

Count

Delete

CurrentInventory

DoEvent

Nothingtoplace

DoEvent
AppearObjects
AppearObjects
AppearObjects

Items TempItem
TempItem
Clicked
DoEvent

int i
int Deletei
bool Delete

ItemClass Items

ItemName TempItem ItemName

Deletei i
Delete

i

Delete

Items Items Deletei

1

0

0
1
2

0
0

1

//When placing an item it is removed from the player's inventory

//This function is used to add a vine back to the player's inventory

//This function is used when adding a vine to the scene, removing it from the inventory list

The GiveVine() function checks to see if the item held by the player is able to be
placed down. This is done via a Foreach loop which checks each item stored in

AppearObjects and AppearNames to see if it matched the held item. If it does, the
item gets removed from the player’s inventory, using the DeleteItem() function, and
adds the GameObject associated with it in AppearObjects into the 3D space. The

Inventory item gets removed from the list via DeleteItem() which removes the Inventory
item from the Items list in the Inventory script, but before removing it, the script saves

the placed item in TempItem, for when the player picks it back up again.

93

TakeVine() is called when the player interacts with a spot which already has an item
placed within it, and adds the item stored in TempItem back into the Inventory script’s
Items list, whilst also removing the item from the 3D space. This script is designed to
easily create new spots that can place specific items, without needing to change the

script to do so. Each function is named after Vines, as for a good while the only
instance of the Inventory script was used to place vines down.

The vine script is the final one needed to manage the inventory system, and is so
simple I can explain it in this one paragraph. The script checks to see if an item placed
by the player is active, and if it is it will also activate new platforms in the 2D space. If

the 3D object associated with the script isn’t there, then it means no platform will
appear in the 2D space. This script is incredibly simple, but is the key piece of code
which allows placed items to affect the 2D space. It’s named Vine as it was originally

only used to place vines down in the second segment.

Vine - Script:

94

Segment 1 - Introduction to Game:
The first segment of the game serves as a general introduction to the game, giving the
player a space to become antiquated with the 2D and 3D gameplay styles. This area

introduces a few simple mechanics and scripts which will be explained in this segment.
The scripts discussed in this section are as follows: AtariAbilityTrigger, DestroyTrigger,

DecalTrigger and MovingPlatform2D .

I am linking these two scripts in one segment as they are both incredibly simple scripts
used for only one or two objects in the game that only really serve to check when the
player has triggered with them. The AtariAbilityTrigger script activates the Atari Jump

ability that’s stored in AtariAbilitySave. The DestroyTrigger script destroys a
gameobject stored in the scene when triggered, and is only really used for this starting

area.

Figure 2 - Segment 1

AtariAbilityTrigger and DestroyTrigger:

AtariAbilityTrigger - Variables:
public

SerializeField AtariAblilitySave AAS
SerializeField CornerTrigger CT

 :
{

 [] ;

 [] ;

}

class AtariAbilityTrigger MonoBehaviour

95

DestroyTrigger:

This script only has two variables, and is used to trigger the Atari jump ability so that
the player can jump. This script also sets it so the camera doesn’t change position at

the first corner of the first area. The variables are as follows:

AAS (AtariAbilitySave) - The Variable that stores the AtariAbilitySave scriptable object.

CT (CornerTrigger) - The variable that stores the values of the first Corner Trigger of the
first decal area.

After triggering with the player, this script activates the jump before deleting itself.

This script only has one variable, being:

DestroyGObject (GameObject) - This variable stores the gameObject that will be
destroyed on trigger.

On trigger this script will check to see if the object has been destroyed yet, and if it
hasn’t it will destroy the object, before the script destroys itself.

AtariAbilityTrigger - OnTriggerEnter():

 private (Collider other)

 {

 (other.gameObject.tag)

 {

 .CameraB ;

 .AtariJump ;

 (gameObject);

 }

 }

//When Entering the trigger the game will allow the Atari player to jump

//This script also sets it so the camera in the first area no longer moves around in scale.

void

if ==

=
=

OnTriggerEnter

Destroy

"Player"

CT false
AAS true

public :
{

 [SerializeField] GameObject ;

 ()

 {

 (other.gameObject.tag)

 {

 (DestroyGObject)

 {

 (DestroyGObject);

 (gameObject);

 }

 }

 }

}

class

private void

if ==

if !=

DestroyTrigger MonoBehaviour

OnTriggerEnter

Destroy
Destroy

DestroyGObject

Collider other
//This script destroys a object when the player enters its trigger.

"Player"

null

96

This script has several variables which are used to effectively fade in the Decals in the
scene. The variables are as follows:

DP (DecalProjector) - This variable stores the projector for the specific decal that
fades onto the scene.

FadeCount (float) - This variable works to store the current value of DP’s fadefactor,
used for debugging purposes within the Editor.

Triggered (bool) - This bool is used to check whether the player has already triggered
the collider for the Decal Text appear.

SetOn (bool) - This bool is used to check if the decal has been called to fade on in the
Update() function.

DecalTextAppear:

public :
{

 [SerializeField] DecalProjector ;

 float ;

 bool ;

 bool ;

 ()

 {

 .fadeFactor ;

 }

 ()

 {

 FadeCount .fadeFactor;

 (SetOn)

 {

 SetOn ;

 (());

 }

 }

 ()

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 (Triggered)

 {

 (());

 }

class

public
public

public

void

=

void

=

if ==

=

private void

if == || == || ==

if ==

DecalTextAppear MonoBehaviour

Start

Update

StartCoroutine Fadein

OnTriggerEnter

StartCoroutine Fadein

DP

FadeCount
Triggered

SetOn

Collider other

// Start is called before the first frame update

// Update is called once per frame

//Causes a decal to fade in when entering the trigger.

DP 0

DP

true

false

false

"Player" "Pollen" "EvilPollen"

This area is the first to incorporate the bits of Decal text that fade into the scene when
triggered, which is seen throughout the game. These are used to show the inner

monologue of the protagonist as well as to explain tutorials for new mechanics, whilst
keeping things contextual within the 3D space.

DecalTextAppear - Variables and Functions:

97

The Start() function for this script is simple and only does one thing, being to set the
value of the DecalProjector’s FadeFactor to 0, so that the decal start off invisible. The
Update() and OnTriggerEnter() function both serve the same purposes - to start the
fading process by calling the FadeIn() IEnumator. The difference is how these functions
are incorporated. The TriggerEnter() function is used to call it when the 2D player or the
2D pollen enters the trigger. Meanwhile the Update() function calls the IEnumerator

within other scripts, such as the EventsCode script.

This IEnumerator works as a make-shift loop continuously increases the value of the
DP’s fadefactor, until it is fully visible in the scene. This loop is created in a series of if
statements, which check the value of DP’s fadefactor. If the fadefactor is less then 1,

then it will add 0.01 to the total, before calling the IEnumerator again. Once the value of
the fadefactor reaches or exceeds 1, then the IEnumerator is complete, and no longer
gets called. This works well to have the decals fade on screen, and can easily have

instances of gameObjects within the scene.

This area is the first to have the Moving Platforms, which are seen throughout the game,
and have a HoldPlatform variant. As the name implies these platforms were only meant

to be used within the 2D space, but eventually the design of the game shifted to
incorporate them in the 3D space, so the code was adjusted to allow for this. The script
was also adjusted later to allow for the end position of the platform to be changed by

other scripts and buttons.

DecalTextAppear - Fadein():

 public IEnumerator ()

 {

 Triggered ;

 (.fadeFactor)

 {

 .fadeFactor 0.01f;

 }

 (0.01f);

 (.fadeFactor)

 {

 .fadeFactor 1f;

 }

 {

 (());

 }

 }

//This IEnumerator is called to fade the Decal Projection on screen.

//This will keep looping until the projection is fully faded onto the scene.

Fadein

WaitForSeconds

StartCoroutine Fadein

=

if <=

+=

yield return new

if >=

=

else

true

DP 1

DP

DP 1

DP

MovingPlatform2D:

98

This script has several variables, which are as follows:

StartPos and EndPos (Vector3) - These Vector3s store the starting and ending
positions of the platform, and is updated for when the platform moves back and forth.

StartSave and EndSave (Vector3) - These Vector3s save the original starting and
ending positions of the platform.

movelerp and movespeed (float) - These floats store the current value of the
movement lerp and the speed that the platform moves at.

WaitTime and WaitSave (float) - These floats store the max time that the platform
should wait between movements and the float that stores the current time the

platform has been waiting for.

CanMove and GoneOnce (bool) - The first of these bools needs to be true for the
platform to begin moving, whilst the second is used to register when the platform

should begin moving back the way it came.

Platform3D (bool) - This bool, when set, means that the instance of the script is for a
platform in the 3D moving space.

MovingPlatform2D - Variables:
public :
{

 [SerializeField] Vector3 , ;

 [SerializeField] Vector3 , ;

 [SerializeField] float , ;

 [SerializeField] float ;

 [SerializeField] float ;

 [SerializeField] bool ;

 [SerializeField] bool ;

 bool ;

 [SerializeField] Vector3 ;

 [SerializeField] GameObject ;

 [SerializeField] bool ;

class

public

MovingPlatform2D MonoBehaviour

//These variables store the position for the start and end of the movement

//These variables are used to save the current start and end of the movement in the script.

//These variables store the speed of the movement and the count of the lerp.

//This stores the time the platform has to store, and the current save of the wait.

//This bool when set shows that the platform is a 3D platform.

//This stores the Start of the platform for when the platform's position changes.

//This stores the Invisible Walls of 3D object.

StartPos EndPos

StartSave EndSave

movelerp movespeed

WaitTime
WaitSave

CanMove

GoneOnce

Platform3D

originalstart

Inviswalls

Changed

99

originalstart (Vector3) - This Vector3 stores the original starting position of the
gameObject, and is used for the 3D platform.

Inviswalls (GameObject) - This variable stores the invisible walls that are used for the
3D platform to make sure the player doesn’t fall off the edges.

Changed (bool) - This bool is set to true when the end position of the platform gets
changed in the ChangeEnd() function.

MovingPlatform2D - Start(), FixedUpdate() and Update():

 ()

 {

 StartSave StartPos;

 EndSave EndPos;

 gameObject.transform.localPosition StartPos;

 originalstart StartPos;

 }

 ()

 {

 (CanMove)

 {

 ();

 }

 }

 private ()

 {

 (Platform3D)

 {

 Inviswalls. (gameObject.transform.localPosition originalstart);

 }

 }

// Start is called before the first frame update

//The start function sets up the movement of the platform

// Update is called once per frame

//The movement for the platform is called in the FixedUpdate() so that it is consistent within the Build.

//The Update() function checks whether it is a 3D platform,

 and if it is, it works to either keep the 3D platforms invisible walls.

void

=
=

=

=

void

if ==

void

if ==

!=

Start

FixedUpdate

Movement

Update

SetActive

true

true

The Start() function is used to set up the position of the platform, to make sure it is
positioned at the location stored in StartPos. This function also sets up the values of

StartSave and EndSave, to be the values stored in StartPos and EndPos. It then sets the
value of the originalstart variable to be that of StartPos, which is used in later functions.

The Movement for the platform (appropriately named Movement()) is called from
within the FixedUpdate() function, so that the speed of the platform’s movement is

consistent within the Editor and Build.

The Update() function is only needed for the 3D alternatives to the platforms. This
function is used to either activate or deactivate the invisible walls surrounding the 3D

platform, activating them when the platform is not at the starting position, stored in the
orignalstart variable. This works to make sure the player can’t fall off the platform whilst

its in the air.

100

MovingPlatform2D - OnCollisionStay(), OnCollisionExit()
and ChangeEnd():

The OnTriggerStay() and OnTriggerExit() functions of this script are used to parent and
de-parent the 2D Rock objects to the platform. These also originally were used to
parent the player themselves to the platforms, though this was later changed to be
done in the DecalTriggers script. The ChangeEnd() function is a function called by
external scripts, and changes the end position of the platform. This function only

changes the values once, no longer working once the changed bool is set to true. This
function changes the values of EndPos and EndSave to the new values stored in the
NewEnd Vector3, which is set within the function. This causes the platform to teleport
back to the start position, but I chose to not waste dev time on fixing this very small
issue. The speed of the platform is also decreased, as if it remains the same speed as

the platform regularly, then the platform will move too fast.

 private (Collision collision)

 {

 (collision.gameObject.tag)

 {

 collision.gameObject.transform.parent gameObject.transform;

 }

 }

 private (Collision collision)

 {

 (collision.gameObject.tag)

 {

 collision.gameObject.transform.parent ;

 }

 }

 public (Vector3 NewEnd)

 {

 (Changed)

 {

 Changed ;

 StartPos originalstart;

 EndPos NewEnd;

 EndSave NewEnd;

 movespeed 0.2f;

 }

 }

//The script parents the 2D rock to the platform when it enters the trigger,

 so there are no glitches with collision.

//This function is called by other scripts to change the end position of the moving platform.

//The speed of the platform is decreased so that it isn't too fast.

void

if ==

=

void

if ==

=

void

if ==

=
=

=
=

=

OnCollisionStay

OnCollisionExit

ChangeEnd

"Rock"

"Rock"

null

false

true

101

MovingPlatform2D - Movement():

The Movement() function is - unsurprisingly - the most important function in the
script, and is called within the FixedUpdate(). This function moves the position of the
platform via a movement lerp between StartPos and EndPos. This only occurs when

GoneOnce is false. The function then checks the value of the moveLerp, checking when
it has reached or exceeded the value of 1. When this is true, the script then will swap
over the values of the StartPos and EndPos, so that they are the opposite of what they
were previously saved as. During this, GoneOnce is set to true so that the platform
stops moving. GoneOnce will return to being set as false once the waiting period has
been completed, if there needs to be any waiting. The waiting works by increasing the
WaitTime by 0.1 consistently until the value exceeds or equals that stored in WaitSave.
Once the values reach this point, the function resets for a new movement Lerp. This

script works well to properly and easily add Moving Platforms to the game.

 public ()

 {

 (GoneOnce)

 {

 movelerp Mathf. (movelerp Time.deltaTime movespeed, ,);

 gameObject.transform.localPosition Vector3. (StartPos, EndPos, movelerp);

 }

 (movelerp)

 {

 (GoneOnce)

 {

 GoneOnce ;

 (StartPos StartSave)

 {

 StartPos EndSave;

 EndPos StartSave;

 }

 (StartPos StartSave)

 {

 StartPos StartSave;

 EndPos EndSave;

 }

 }

 (GoneOnce WaitTime WaitSave)

 {

 WaitTime 0.1f;

 }

 (GoneOnce WaitTime WaitSave)

 {

 WaitTime 0f;

 movelerp 0.1f;

 GoneOnce ;

 }

 }

 }

//This script is used to create the moving platform, having them move between two locations in a loop

//This function checks if the platform has already reached the end of the movement

//This checks the value of MoveLerp, and checks whether the

 platform needs to wait after reaching the end position.

void

if ==

= + * *

=

if >=

if ==

=
if ==

=
=

else if !=

=
=

if == && <=

+=

else if == && >=

=
=
=

Movement

Clamp

Lerp

false

1 0 1

1

false

true

true

true

false

102

Segment 2 - Introduction To Inventory:

Projector:Projector:
The Projector is an item that appears throughout the game, and is used to help the

player plan with how to handle the 2D platforms and space. It is used for puzzles
throughout the game, and is easily placed throughout the game.

The second segment of the game introduces the player to the inventory system in the
game. This system is complicated enough to have it’s own section discussing it, but

aside from the Inventory, this area also introduces a new feature in the Projector, which
is used to help plan within the 2D space. This area also originally had the player change

camera angles to place items down from the Inventory, which ended up being
scrapped.

Projector - Variables:
public :

{

 [SerializeField] bool ;

 [SerializeField] GameObject ;

 [SerializeField] bool ;

 [SerializeField] GameObject ;

 [SerializeField] audiomanager ;

 [SerializeField] VoiceActing[] ;

 bool ;

class

public

Projector MonoBehaviour

//The bool for the variables for the projector, being to check when the projector is on and the 2D area that appears.

//The audio lines for the projector when it's turned on and off.

//When this bool is set to true, the 2D area will stay on even if the player is swapping between styles.

On

OnItem

PressedE

ProjectorLight

AM

OnandOff

Keepon

Figure 3 - Segment 2

103

This script has several scripts all needed to keep it running. The variables are as follows:

On (bool) - This bool registers whether the projector is on or off.

OnItem (GameObject) - This is the 2D section that the Projector reveals when it is on.

PressedE (bool) - This bool checks when the player has pressed the E key or not.

ProjectorLight (GameObject) - This is the light that appears

AM (audiomanager) - This variable stores the audiomanager script.

OnandOff[] (Voice Acting) - This is an array that stores different voice lines for when the player turns the
projector on and off.

Keepon (bool) - This bool is set so that the decals don’t deactivate when the player leaves the 2D area.

Projector - Code:
void

=

void

if ==

=
=

if ==

if && ==

= !
=

switch

case

=

break
case

=

break

 ()

{

 GameObject. (). < >();

}

 ()

{

 ProjectorLight. (On);

 (OnItem.activeSelf)

 {

 On ;

 Keepon ;

 }

 (gameObject.layer LayerMask. ())

 {

 (Input. (KeyCode.) PressedE)

 {

 .Projector. ();

 .Projector. < >(). ();

 On (On);

 PressedE ;

 (On)

 {

 :

 {

 OnItem. ();

 Keepon ;

 OnandOff[]. ();

 }

 ;

 :

 {

 OnItem. ();

 Keepon ;

 OnandOff[]. ();

 }

 ;

 }

 }

Start

FindGameObjectWithTag GetComponent audiomanager

Update

SetActive

NameToLayer

GetKeyDown

SetActive
GetComponent AudioSource Play

SetActive

AddLine

SetActive

AddLine

AM

false

false
false

E false

AM true
AM

true

true

true
true
0

false

false
false
1

"AControl"

"ItemSelection"

// Update is called once per frame

//When the projector is on, then the light and the 2D area appear.

//This checks if the 2D area is deactivated, and if it is then the values for On and Keepon are false.

//The effects of the projector can be set by the player when they are looking at the projector.

//The script checks to see if the Projector is highlighted, based on whether the layer of the object is ItemSelected.

//If the player presses E whilst the projector is highlighted then the script will change the value of the On bool.

 (Input. (KeyCode.))

 {

 PressedE ;

 }

 }

 {

 PressedE ;

 }

}

if

=

else

=

GetKeyUp E

false

false

104

This script ended up being unused in the game. Originally when placing items the
player needed to change cameras to a different angle and place the items down with
their mouse click. Since the script is unused I won’t go into too much detail, but I’d like

to show the script and give a vague idea of what it about.

Examine_Point:

public :
{

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 [SerializeField] bool ;

 [SerializeField] Camera ;

 [SerializeField] Camera ;

 [SerializeField] FPS_Movement ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 ()

 {

 AreaCamera.gameObject. ();

 ExamineUI. ();

 }

 ()

 {

 (EnteredArea)

 {

 (Input. (KeyCode.Escape))

 {

 (.openInventory)

 {

 gameObject. < >().enabled ;

 EnteredArea ;

 ();

 }

 }

class

void

void

if ==

if

if ==

=
=

Examine_Point MonoBehaviour

Start

SetActive
SetActive

Update

GetKey

GetComponent BoxCollider

AreaLeave

ExamineObject

PressE

EnteredArea

AreaCamera

MainCamera

FPSM

PlayerCylinder

ExamineUI

// Start is called before the first frame update

//ExamineObject.SetActive(false);

// Update is called once per frame

//Causes elements to occur based on whether the player is looking at the examination area.

false
false

true

FPSM false

false
false

The Start() function is only used to assign the value of the AM variable using
FindGameObjectWithTag. The rest of the code is all shown in Update() function. The

first thing the script does is activate the light of the projector based on the value of On.
It then checks to see if the 2D area is currently active, and if not sets the values of On
and Keepon to false, so that the projector isn’t on constantly after the player beats the

2D section.

The function then checks to see if the Projector is highlighted, which when it is it will
allow the player to press E to turn it on or off. When E is pressed the script will invert
the value of On, before checking the value in a switch statement to either deactivate

the 2D area or activate it.

105

if ==

else

else

private void

if ==

private void

if ==

if

if ==

=
=

private void

if ==

void

=
=

=
=

=
=

void

=
=

=
=

=
=

=
=

 (.openInventory)

 {

 ExamineUI. ();

 }

 {

 ExamineUI. ();

 }

 }

 {

 ExamineUI. ();

 }

 }

 ()

 {

 (other.gameObject.tag)

 {

 PressE. ();

 }

 }

 ()

 {

 (other.gameObject.tag)

 {

 Debug. ();

 (Input. (KeyCode.))

 {

 (EnteredArea)

 {

 gameObject. < >().enabled ;

 EnteredArea ;

 PressE. ();

 ();

 }

 }

 }

 }

 ()

 {

 (other.gameObject.tag)

 {

 PressE. ();

 }

 }

 ()

 {

 ExamineUI. ();

 PlayerCylinder. ();

 ExamineObject. ();

 MainCamera.gameObject. ();

 AreaCamera.gameObject. ();

 Cursor.lockState CursorLockMode.None;

 Cursor.visible ;

 . < >().useGravity ;

 . < >().enabled ;

 .CanMove ;

 .Examining ;

 }

 ()

 {

 ExamineUI. ();

 PlayerCylinder. ();

 ExamineObject. ();

 MainCamera.gameObject. ();

 AreaCamera.gameObject. ();

 Cursor.lockState CursorLockMode.Locked;

 Cursor.visible ;

 . < >().useGravity ;

 . < >().enabled ;

 .CanMove ;

 .Examining ;

 gameObject. < >().enabled ;

 EnteredArea ;

 }

}

FPSM true

false

true

false

true

E

false

false
true

false

false

true
false

true
false
true

true
FPSM false
FPSM false
FPSM false
FPSM true

false
true

false
true
false

false
FPSM true
FPSM true
FPSM true
FPSM false

true
false

SetActive

SetActive

SetActive

OnTriggerEnter

SetActive

OnTriggerStay

Log
GetKey

GetComponent BoxCollider

SetActive
AreaLook

OnTriggerExit

SetActive

AreaLook

SetActive
SetActive

SetActive
SetActive
SetActive

GetComponent Rigidbody
GetComponent CapsuleCollider

AreaLeave

SetActive
SetActive

SetActive
SetActive
SetActive

GetComponent Rigidbody
GetComponent CapsuleCollider

GetComponent BoxCollider

Collider other

Collider other

Collider other

"Player"

"Player"

"TriggeredWithItem"

"Player"

//Sets up the area examination when in the area's trigger.

//This function sets up the variables of the Examination area and freezes the player's movement.

 In addition it makes the mouse visible on screen again.

//This function closes the area examination and brings the player back to regular gameplay

106

The general idea of this script is that when the player enters the trigger they can press
E to swap camera angles to the area, via the AreaLook() function, which deactivates the
player and activates a camera locked to the area. Then when the player presses escape

the AreaLeave() function is called, which reactivates the player and removes the
camera.

107

Segment 3 - 2D Rock Puzzle Introduction:
This segment of the game is directly after the player walks through the game’s hub

area, and introduces the 2D rock ability. This ability is explored further in the section
discussing the rock abilities, the script also introduces the use of Timelines for

dialogue, though this is also discussed in the Dialogue section of the document. Aside
from these, the main thing introduced in this segment are the switch and gate

mechanics, which are used throughout the game.

The switch mechanic is used throughout the game, and was initially only there to be
used to open gates. As the game progressed, the switch ended up being used for
several different purposes, from gates to HoldPlatforms and so forth. The switch

mechanic uses two scripts, Switch and SwitchTrigger. SwitchTrigger is a small script
attached to the trigger of the switch, which is used to register when the player has

stood on the switch or not. This trigger is then registered in the Switch code within the
Switch that the trigger will be parented. These switches where created as a prefab to

make placement of them easy.

Figure 4 - Segment 3

Switch and SwitchTrigger:

108

The variables for this script are as follows:

Hit (bool) - This bool is called within the Switch script to check when the trigger has
been pressed.

TriggerObject (GameObject) - This GameObject is used to store the current object
that has triggered the script.

S (Switch) - This stores the parent objects Switch script.

In the Update() function this script checks whether the object has been triggered, and
if so it checks the current value of the GameObject stored in TriggerObject, whether it
is null or deactivated. If this is true, then the script registers that the object has been

deactivated or deleted, and needs to therefore reset the values of Hit and
TriggerObject to false and null. This is done so the script doesn’t glitch when objects

that were triggering it are deleted without necessarily exiting the Trigger.

SwitchTrigger:
public :
{

 bool ;

 GameObject ;

 [SerializeField] Switch ;

 ()

 {

 (Hit (TriggerObject TriggerObject.activeSelf))

 {

 Hit ;

 TriggerObject ;

 }

 }

 ()

 {

 (other.gameObject.tag other.gameObject.tag other.gameObject.tag other.gameObject.tag)

 {

 Hit ;

 TriggerObject other.gameObject;

 ()

 {

 (.Changed .ChangeMove)

 {

 . ();

 }

 }

 }

 }

 ()

 {

 (other.gameObject TriggerObject)

 {

class

public

public

private void

if == && == || ==

=
=

private void

if == || == || == || ==

=
=

if !=

if == &&

private void

if ==

SwitchTrigger MonoBehaviour

Update

OnTriggerStay

HitandChange

OnTriggerExit

//This bool is called in the Switch script to check if the player has hit the trigger.

//This object stores the object that has triggered with the switch.

//This stores the Switch script attatched to the parent gameobject.

//The game checks to see if the switch has been hit and whether the TriggerObject

 is null or not active, before resetting the values of Hit and TriggerObject

//This is done so the script can register when an object is deleted.

//On Trigger the switch sets Hit to true and stores the triggered object as TriggerObject.

//If the switch is made to swap the end position of a moving platform then the Switch scripts HitandChange() function will be called.

//On leaving the trigger the values of Hit and TriggerObject are reset.

Hit

TriggerObject

S

Collider other

Collider other

true null false

false
null

true

S null

S false S

S

"Player" "Rock" "Pollen" "EvilPollen"

 Hit = false;

 TriggerObject = null;

 }

 }

}

109

The majority of this script’s code is found within the OnTriggerStay() function, which if
triggered by an appropriate object sets the values of Hit and TriggerObject. This
function then checks whether the Switch is used to change the end position of a

moving platform, and if this is true then the HitandChange() function from the Switch
script is called. When Exiting the trigger the values of Hit and TriggerObject were reset

to false and null, allowing the switch to be hit again.

This script has quite a few variables, all needed to properly get it working, they are as
follows:

ST (SwitchTrigger) - This variable stores the SwitchTrigger script assigned to a child of
the Switch.

Pressed (bool) - This bool is used to mark when the switch has been pressed, used for
both debugging purposes and the script itself.

GateAnim and SwitchAnim (Animator) - These animator variables store the animator
components for the assigned Gate and the assigned Switch, allowing the gate and

switch to move once pressed.

Switch - Variables:
public :
{

 [SerializeField] SwitchTrigger ;

 bool ;

 [SerializeField] Animator ;

 [SerializeField] Animator ;

 [SerializeField] int ;

 [SerializeField] HoldPlatforms[] ;

 [SerializeField] bool ;

 [SerializeField]float ;

 [SerializeField] float ;

 [SerializeField] bool ;

 [SerializeField] MovingPlatform2D ;

 [SerializeField] Vector3 ;

 bool ;

 bool ;

 [SerializeField] Animator[] ;

 [SerializeField] bool[] ;

class

public

public
public

Switch MonoBehaviour

//Stores the trigger for the switch

//Registers if the swithc has been hit.

//These store the animators for the Gate and Switch

//This value changes the type of switch that the instance is.

//This stores potential HoldPlatforms that can be affected by the sript.

//These variables store whether the button needs to wait before resetting it's value.

//This registers if the Gate starts open in the game.

//These variables are used for the function when changing the end position of a moving platform.

//These arrays are used to store arrays of Gates that are affected by the switch and whether they start shut.

ST

Pressed

GateAnim

SwitchAnim

SwitchType

HP

Waitbool
waittracker
WaitMax

StartShut

MoveTD
NewEnd

Changed
ChangeMove

GateArray
StartShutArray

110

Switch - Update(), FixedUpdate() and HitandChange():

 ()

 {

 (SwitchType)

 {

 :

 {

 SwitchAnim. (, .Hit);

 (StartShut)

 {

 GateAnim. (, .Hit);

 }

 {

 GateAnim. (, .Hit);

 }

 Pressed .Hit;

 }

 ;

// Update is called once per frame

//A switch statement that swaps between the differentely used buttons in the scene

//This calls the default Gate Opening

//The Button for Gates

void

switch

case

if ==

else

!

=

break

Update

SetBool

SetBool

SetBool

0

ST

false

ST

ST

ST

"Button"

"Button"

"Button"

SwitchType (int) - This int stores the type of effect the switch will have when pressed.

HP[] (HoldPlatforms) - This array stores the HoldPlatforms that the switch can effect if it is
that version of switch.

Waitbool (bool) - This bool, when true, has the effects of the switch wait a bit before resetting
their effects.

waittracker and WaitMax (float) - These floats store the current time that the switch has
waited and the max time to wait respectively.

StartShut (bool) - This bool, when true means that the default gate function starts with the
gate starting open.

MoveTD (MovingPlatform2D) - This stores the code for any Moving Platforms that will have
their end position changed after the switch is pressed.

NewEnd (Vector3) - This Vector3 stores the new position that the moving position will end at.

Changed and ChangeMove (bool) - These bools are used to register if the MovingPlatform
needs to be changed, and whether it has changed already.

GateArray[] (Animator) - This stores an array of different gates that can be opened by the
switch.

StartShutArray[] (bool) - This array of bools works alongside the array of Gates to mark if
they start shut or not.

111

 :

 {

 SwitchAnim. (, .Hit);

 (HoldPlatforms hp)

 {

 hp.Pressed .Hit;

 }

 Pressed .Hit;

 }

 ;

 :

 {

 SwitchAnim. (, .Hit);

 GateAnim. (, .Hit);

 (HoldPlatforms hp)

 {

 hp.Pressed .Hit;

 }

 Pressed .Hit;

 }

 ;

 :

 {

 (.Hit Waitbool)

 {

 Waitbool ;

 SwitchAnim. (,);

 }

 (Waitbool)

 {

 (HoldPlatforms hp)

 {

 hp.Pressed ;

 }

 Pressed ;

 }

 (Waitbool waittracker WaitMax)

 {

 Waitbool ;

 waittracker ;

 SwitchAnim. (,);

 (HoldPlatforms hp)

 {

 hp.Pressed ;

 }

 Pressed ;

 }

 }

 ;

case

in

=

=

break
case

in

=

=

break
case

if == && ==

=

if ==

in

=

=

if == && >=

=
=

in

=

=

break

1

ST
HP

ST

ST

2

ST
ST

HP

ST

ST

3

ST true false

true
true

true

HP

true

true

true

false
0

false

HP

false

false

//The calls the HoldPlatform variaty of switch.

//The Button opens gate and moves platform

//This button activates as true for a few seconds, before deactivating.

//This type is used for HoldPlatforms.

SetBool
foreach

SetBool
SetBool

foreach

SetBool

foreach

SetBool

foreach

"Button"

"Button"
"Button"

"Button"

"Button"

112

 :

 {

 (.Hit Waitbool)

 {

 Waitbool ;

 Pressed ;

 SwitchAnim. (,);

 GateAnim. (,);

 }

 (Waitbool waittracker WaitMax)

 {

 Waitbool ;

 waittracker ;

 SwitchAnim. (,);

 GateAnim. (,);

 Pressed ;

 }

 }

 ;

 :

 {

 SwitchAnim. (, .Hit);

 Pressed .Hit;

 }

 ;

 :

 {

 SwitchAnim. (, .Hit);

 int i ;

 (Animator GateArray)

 {

 (StartShutArray[i])

 {

 . (, .Hit);

 }

 (StartShutArray[i])

 {

 . (, .Hit);

 }

 i ;

 }

 Pressed .Hit;

 }

 ;

 }

 }

 ()

 {

 (Waitbool)

 {

 waittracker 0.1f;

 }

 }

 ()

 {

 (Changed)

 {

 Changed ;

 MoveTD. (NewEnd);

 }

 }

}

case

if == && ==

=

=

if == && >=

=

=

=

break

case

=

break

case

=

in

if ==

else if ==

!

++

=

break

private void

if ==

+=

public void

if ==

=

4

ST true false

true

true

true

true

true

false

0

false

false

false

5

ST

ST

6

ST

0

A

false

A ST

true

A ST

ST

true

false

true

//This button activates as true for a few seconds, before deactivating.

//This type is used for Gates

//This type only animates the switch.

//This type open multiple gates at once.

//The wait Timers are called in the FixedUpdate()

//This function changes the end position of a Moving Platform.

//This is stored in a seperate function in order to make sure it only happens once.

SetBool

SetBool

SetBool

SetBool

SetBool

SetBool

foreach

SetBool

SetBool

FixedUpdate

HitandChange

ChangeEnd

"Button"

"Button"

"Button"

"Button"

"Button"

"Button"

"Button"

"Button"

113

The majority of this script is called within the Update() function, which uses a Switch
Statement to check the value of SwitchType to determine what version of function the

switch should have, so for this, I will explain each variety of the switch functions in
order.

When SwitchType is 0, then the effects of the switch are the default variety, designed
to open a singular gate and that’s it. This type also checks whether the gate needs to

start shut or not, and will invert the values of the gate based on that. When the value is
1, then that means the switch is made to work with the HoldPlatforms, it does this with
a for loop that moves each platform selected. When the value is 2 it works to move a

HoldPlatform and open a gate at the same time. A 3 value sets it so the HoldPlatforms
move, but wait a period of time before moving back to original position. The waiting will

be increased within the FixedUpdate().

The 4 value works to keep gates open over a set time, using the same wait system
made for the Hold Platforms. When the value is 5, it works to only animate the switch

being pressed. Finally, when the value is 6, the switch is used to open multiple gates at
once. With all these classified it is easy to add switches with these mechanics, and is

also easy to add new functions to the list.

The FixedUpdate() is used to calculate the time spent waiting in a fixed rate that is
consistent between the Editor and Build. Finally, the HitandChange() function is called

in order to swap the end position of the moving platform assigned to the switch, and is
done this way so that the function only occurs once.

One final script used in this area, is that of GiveRock, which has a public function which
is called by the segment’s timeline to activate the Rock ability in the 2D area. It is

incredibly simple and incredibly short, so doesn’t require any real analysis, but
regardless it is a script made for the game, and therefore needs to be examined.

This script has one purpose, to activate the AtariRock ability stored in AtartAbilitySave,
and to allow the player to move again after the timeline ends. This is done easily via the

GiveRockFunction() function which is called by the timeline, and works easily.

GiveRock:

public :
{

 [SerializeField] AtariAblilitySave ;

 [SerializeField] DecalMovement ;

 ()

 {

 .AtariRock ;

 .isMove ;

 .CutsceneJump ;

 }

}

class

public void

=
=

=

GiveRock MonoBehaviour

GiveRockFunction

//This script is called by the Timeline in Segement 3 to activate the player's 2D rock ability.

AAS

DM

AAS true
DM true
DM false

GiveRock - Script:

114

Segment 4 - Floor Platforming:
This section follows the introduction of the 3D Rock ability, and requires the player to
knock over a vine to change the path in the 2D space. This area introduces two new

scripts and mechanics to the game, the first of which being the ability to change the
gravity of the scene. This script is needed for the 2D sections to be positioned on the

floor, in order to stop the player from falling through the ground. This area also
introduces the HoldPlatforms, a variation on the Moving Platforms that only move when

the player presses the switch.

This script was created as a general system setting, which ended up only being needed
for this one segment. The script is designed to swap the direction of the gravity within

the 3D Space, and was used to allow for more unique 2D sections, for example
platforms on the floor of the scene, rather then them being locked to the walls of the
scene. I believe that in the full release of this game, this script has great potential to

allow for greater unique level designs.

Figure 5 - Segment 4

SettingGravity:

115

This script only has two variables, which are as follows:

RegularPhysics (Vector3) - This Vector3 stores the regular gravitational value of the
scene.

Player (GameObject) - This stores the 3D Player Character.

SettingGravity - Script:
public :
{

 [SerializeField] Vector3 ;

 [SerializeField] GameObject ;

 ()

 {

 RegularPhysics Physics.gravity;

 }

 ()

 {

 (direction)

 {

 :

 {

 Physics.gravity (, , 9.81f);

 }

 ;

 :

 {

 Physics.gravity (, , 9.81f);

 }

 ;

 :

 {

 Physics.gravity (9.81f, ,);

 }

 ;

 :

 {

 Physics.gravity (9.81f, ,);

 }

 ;

 :

 {

 Physics.gravity RegularPhysics;

 }

 ;

 }

 }

}

class

void

=

public void

switch

case

= new

break
case

= new -

break
case

= new

break
case

= new -

break
case

=

break

SettingGravity MonoBehaviour

Start

GravityChange

Vector3

Vector3

Vector3

Vector3

//This script is used to change the gravatational direction of the scene.

//This Vector3 stores the default values of the gravity.

//This GameObject stores the player character

// Start is called before the first frame update

//In the start function the defualt gravity settings are stored in RegularPhysics.

//This function is called by the GenreChange script to set the gravity for the 2D Space.

//When called this function stores a string, which calls different gravity directions based on the value.

//The only one that was used in the game was XPos.

RegularPhysics

Player

string direction

"Zpos"

"Zneg"

"Xpos"

"Xneg"

"Regular"

0 0

0 0

0 0

0 0

116

The value of RegularPhysics is set to be that of the scene’s current gravity, which is
done within the Start() function. The only other function within this script is the

GravityChange() function, which is called by the GenreChange script to change the
gravity of the 2D space. This is done using a string variable called by the function called
direction, which - dependent on the value - will change the direction that the gravity is
pulling with. I find using string variables like this with a Switch Statement works well to
efficiently create changes within the scene. In the current version of the game as of the

submission, the only direction called is “Xpos”, which is used for segment 4 of the
game.

This segment introduces the HoldPlatforms mechanic, platforms which only move
whilst an associated switch is pressed. This script is an off-shoot of the

MovePlatforms2D script, just with more limitations to how the platform can move.
Because of this, this analysis of the script will serve more to explain how the script

differs from it’s Moving relative.

HoldPlatforms:

HoldPlatforms - Variables, Start() and Update():
public :
{

 [SerializeField] Vector3 , ;

 [SerializeField] float , ;

 bool ;

 ()

 {

 gameObject.transform.localPosition StartPos;

 }

 ()

 {

 (Pressed)

 {

 :

 {

 ();

 }

 ;

 :

 {

 ();

 }

 ;

 }

 }

class

public

void

=

void

switch

case

break
case

break

HoldPlatforms MonoBehaviour

Start

Update

HeldMovement

ReleasedMovement

//This script is for the variaty of moving platforms in the game which only move when a switch is pressed.

//These Variables store the Start and Ending Positions of the Platform.

//these floats store the Lerp of the movement and the speed.

//This bool is called in the Switch script and registers if the Switch has been pressed.

// Start is called before the first frame update

//This sets the position of the platform to be the StartPos

// Update is called once per frame

//This checks the value of Pressed and calls functions based of it.

StartPos EndPos

movelerp movespeed

Pressed

true

false

117

This script has a lot less variables then it’s Moving Platform alternative, and this is
because it is a lot simpler of a system. The variables are as follows:

StartPos and EndPos (Vector3) - These variables, like with MovingPlatform2D, are used
to store the starting and ending positions that the platform needs to be in. Unlike the

Moving Platforms, these variables are locked in from the start, and don’t get updated as
the platform moves.

movelerp and movespeed (float) - These floats serve the same purpose as those in
MovingPlatform2D, storing the current value of the lerps progress and the current

speed of the platform.

Pressed (bool) - This bool is set within the Switch script, and tells the platform when
the associated switch has been pressed.

The Start() function serves to move the platform to the position stored in the StartPos
variable. In the Update() function, the script checks the value of the Pressed variable,

seeing if the switch connected to it has been pressed. If it is true, then the
HeldMovement() function is called, and when it is not pressed, the

ReleasedMovement() function is called. These functions serve to move the platform
back and forth, rather then being in one Movement() function.

HoldPlatforms - OnCollisionStay() and OnCollisionExit():

 private (Collision collision)

 {

 (collision.gameObject.tag)

 {

 collision.gameObject.transform.parent gameObject.transform;

 }

 }

 private (Collision collision)

 {

 (collision.gameObject.tag)

 {

 collision.gameObject.transform.parent ;

 }

 }

//Like with the MovingPlatform the script is desigend so that the rock stays parented to it.

void

if ==

=

void

if ==

=

OnCollisionStay

OnCollisionExit

"Rock"

"Rock"

null

Like with the MovingPlatform2D script, the OnCollisionStay() and Exit() functions are
used to parent the 2D rock to the platform, so that no glitches occur.

118

HoldPlatforms - HeldMovement() and
ReleasedMovement():

 public ()

 {

 (movelerp)

 {

 movelerp Mathf. (movelerp Time.deltaTime movespeed, ,);

 gameObject.transform.localPosition Vector3. (StartPos, EndPos, movelerp);

 }

 }

 public ()

 {

 (movelerp)

 {

 movelerp Mathf. (movelerp Time.deltaTime movespeed, ,);

 gameObject.transform.localPosition Vector3. (StartPos, EndPos, movelerp);

 }

 }

//This function is called when the switch is pressed and moves the platform up.

//This function is called when the switch is released, which moves the platform back to the start position.

void

if <

= + * *

=

void

if >

= - * *

=

HeldMovement

Clamp

Lerp

ReleasedMovement

Clamp

Lerp

1

1 0 1

0

1 0 1

The HeldMovement() and ReleasedMovement() functions serve to move the platform
back and forth when pressed. When the switch is pressed, then HeldMovement() is

called, which moves the platform up to the position stored in EndPos. When the switch
is released, then ReleasedMovement() is called, which moves the platform back to the

position stored in StartPos. This system is very simple and works well to get the
platform working.

119

Segment 5 - Boulder Chaser:
The 5th segment of the game has the player platform on a moving boulder, which

reveals platforms as it moves. If the player leaves the confines of the boulder then they
die and need to restart the challenge. This area mostly used mechanics established in

prior areas, but added some more scripts to make the boulder chasing work.

This script is used to check when the player has entered the confines of the boulder,
via triggers, so that they get killed when not keeping up with the boulder. This script

also is used to open the Gate before the boulder when the boulder nears the gate. This
is done by calling the bool within the Boulder’s animation.

Figure 6 - Segment 5

RockTriggerBool:

RockTriggerBool - Variables:
public :
{

 bool ;

 [SerializeField] DecalDeath ;

 [SerializeField] bool ;

class

public

RockTriggerBool MonoBehaviour

//This script is used to make the player die after leaving the boulder's confines.

//This bool is used to affect the value of the gate animators bool

//This stores the death trigger for the boulder

//This bool checks when the player is in the collision of the boulder

Set

DD

InCollide

120

 [SerializeField] Animator ;

 [SerializeField] bool ;

 [SerializeField] GameObject ;

//This stores the animator for the Gate

//This bool, when true, means that the trigger instance is used to open the gate.

//This stores the Atari Player

Gate

SetGate

Player

This script has a few variables, which are as follows:

Set (bool) - This bool is used to change the value of the gate animators bool.

DD (DecalDeath) - This stores the death collider for the boulder to use when killing the
player.

InCollide (bool) - This bool is set to true when the player enters the collision of the
boulder, and is used to kill the player when they leave the boulder collision.

Gate (Animator) - This is the animator for the Gate that is positioned just before the
boulder.

SetGate (bool) - This bool is called in the Animator of the boulder, and registers when
the gate should be open or shut.

Player (GameObject) - This stores the decal player for this segment.

RockTriggerBool - Script:
 private ()

 {

 (Player)

 {

 (Player.activeSelf)

 {

 (Gate SetGate)

 {

 Gate. (, (Set));

 }

 }

 }

 }

 private (Collider other)

 {

 (other.gameObject.tag)

 {

 InCollide ;

 }

 }

 private (Collider other)

 {

 (other.gameObject.tag)

 {

 InCollide ;

 }

 }

void

if !=

if ==

if != && ==

!

void

if ==

=

void

if ==

=

Update

SetBool

OnTriggerEnter

OnTriggerStay

//The Update() function is used to open the gate, if the instance is the right trigger for it.

//When the player enters the trigger, the script registers it has now collided.

//When staying the trigger the script registers that the player has collided with the boulder.

null

true

null true

true

true

"Button"

"Player"

"Player"

121

 private (Collider other)

 {

 (other.gameObject.tag)

 {

 (InCollide)

 {

 . ();

 InCollide ;

 }

 }

 }

//If the player exits the trigger of the boulder then they get killed.

void

if ==

if ==

=

OnTriggerExit

Die

"Player"

true

DD
false

The Update() function for this script is used to open and shut the gate animator, with it
checking if the instance of the script is meant for the gate to open, based on whether
the Player variable is null or not. From there it just checks to see if the gate should be
open, and if so it then sets the animation bool of the gate to the inverse of the value of

Set.

The script then uses the OnTriggerEnter() and Stay() functions to check if the player is
within the confines of the boulder. If the player is, then InCollide is set to true, which is
used in the OnTriggerExit() function, which will kill the player upon them leaving the

trigger if this variable is true.

TriggerAnim:
The only other script used in this area is that of TriggerAnim, which is used to reset the
animation of the Boulder when the player nears the start of the segment, so that they
don’t need to wait for it respawn. This is done using a Trigger just before the spawning

of the boulder, which when enters resets the boulder.

TriggerAnim - Script:
public :
{

 [SerializeField] Animator ;

 [SerializeField] bool ;

 ()

 {

 (other.gameObject.tag)

 {

 (Anim)

 {

 Anim. (, set);

 }

 }

 }

}

class

private void

if ==

if !=

TriggerAnim MonoBehaviour

OnTriggerEnter

SetBool

//This script is used to restart the boulders animation so the player doesn't need to wait.

//This stores the animator for the boulder

//This bool stores the value that the animator should be set at.

//When triggered this resets the position of the moving boulder.

Anim

set

Collider other

"Player"

"Restart"

null

122

This script only has two variables, which are as follows: 

Anim (Animator) - This stores the Animator for the boulder.

set (bool) - This bool stores what value the Animator of the boulder’s bool should be
set at.

When entering the trigger of this object, the script restarts the animation, so that the
boulder is back at its start location. This is simple and works well to keep the boulder

near the player.

123

Segment 7 - Optional Area and Mega
Man Introduction:

After the culmination of mechanics that was Segment 6, Segment 7 is mainly there to
set up the next 2D Gameplay style, being the Mega Man style of gameplay. Because of
this, the segment is filled with new mechanics unique to that style of gameplay, which

works quite well. In addition, this segment has an optional area of gameplay that serves
to be it’s own unique platforming challenge that the player can experience just for fun.

This optional area has the player need to use the 3D rock ability to block a leak of
water, which then effects the 2D section in turn. This part of the document will discuss
the code presented in the Optional Area first, before examining what was added to the

Mega Man Introduction.

The optional area of the game revolves around the mechanic WaterBlock provides, with
the player needing to block the water leak with a 3D rock. When this is done the

platforms in the 2D area change to reflect if their is any water or not. I like this
mechanic and think it creates a good connection between the 2D and 3D spaces.

Figure 7 - Segment 7, Optional Area

WaterBlock:

124

public :
{

 [SerializeField] GameObject[] ;

 [SerializeField] GameObject ;

 [SerializeField] Vector3 ;

 [SerializeField] GameObject ;

 [SerializeField] bool ;

class WaterBlock MonoBehaviour

//This script is attatched to the hole squirting water which affects the 2D platforms in the optional area.

//This stores the different decal platforms that show when the player hits the hole with the rock.

//This Stores the Water particles that appear from the hole in the wall.

//This stores the position that the rock will be placed in after colliding with the hole.

//This stores the instance of the rock that triggers the hole

//This bool stores whether the hole has been hit or not.

RockShow

Water

RocPos

RockObject

BeenHit

This script has five variables needed for the system to work. They are as follows:

RockShow[] (GameObject) - This array of GameObjects store the 2D platforms that
are swapped between when the rock blocks the water source.

Water (GameObject) - This GameObject stores the particle system that is used to
show the leaking water.

RockPos (Vector3) - This Vector3 stores the position that the rock will be locked at
when it blocks the water source.

RockObject (GameObject) - This GameObject stores the instance of the 3D Rock
which triggers with the Water Source.

BeenHit (bool) - This bool checks to see if the Rock has blocked the Water Source or
not.

WaterBlock - Variables:

WaterBlock - Script:

 ()

 {

 (RockObject BeenHit)

 {

 RockShow[]. ();

 RockShow[]. ();

 Water. ();

 BeenHit ;

 }

 }

 private (Collision collision)

 {

 (collision.gameObject.tag)

 {

 RockObject collision.gameObject;

 BeenHit ;

 RockObject.transform.parent gameObject.transform;

 RockObject.tag ;

 RockObject.transform.localPosition RocPos;

 RockObject. < >().velocity Vector3.zero;

 RockObject. < >().constraints RigidbodyConstraints.FreezeAll;

 RockObject. < >().mass ;

 Water. ();

 RockShow[]. ();

 RockShow[]. ();

 }

 }

// Update is called once per frame

//This checks the whether the object has been hit or not.

//This checks when the rock has collided with the hole in the wall, if it has then it sets the 2D scene up to be the unflooded platforms.

void

if == && ==

=

void

if ==

=
=

=
=

=
=

=
=

Update

SetActive
SetActive

SetActive

OnCollisionEnter

GetComponent Rigidbody
GetComponent Rigidbody
GetComponent Rigidbody

SetActive
SetActive
SetActive

null true

0 true
1 false

true
false

true

0
false

0 false
1 true

"Rock"

"Untagged"

125

The functions used within this script are only the Update() and OnCollisionEnter()
functions. In the Update() function is used to check whether the 3D Rock blocking the
Water Source has been deleted. If this happens, then it swaps the 2D area back to the
flooded variety, and adds back the particles. The OnCollisionEnter() function is where
the script swaps the 2D area’s platforms, changing it over to the unflooded platforms
when the 3D Rock enters the collision, it also locks the position of the 3D Rock to be

placed directly in the centre of the water source.

This spring is a mechanic first introduced in the optional area, which increases the
jump height of the player when they enter the spring’s trigger. It later got updated to
also have the pollen shot by the Mega Man Player deflect off of it, in order to create a

chain of bouncess

The spring script has six variables, though not all are needed to be set at once. Half are
only needed for the Decal Player, whilst other half are needed for the Mega Man Player’s

pollen bullets. The variables are as follows:

DM (DecalMovement) - This Variables stores the DecalMovement code needed for the
Atari Player that can trigger with the spring.

RegularJump and SwapJump (float) - These float variables store the values needed to
change the jump height of the Atari Player. Regular Jump stores the default value of the

player’s jump, whilst SwapJump stores the value of the jump when the player is
colliding with the spring.

NewEnd and NewStart (GameObject) - These GameObjects are used to swap out the
current target and start point of the pollen bullets that collide with the spring.

Up (bool) - This bool is used to check whether the pollen bullet bouncing off the spring
is moving in the Y-axis or the X-axis.

Spring:

Spring - Variables:
public :
{

 [SerializeField] DecalMovement ;

 [SerializeField] float ;

 [SerializeField] float ;

 [SerializeField] GameObject ;

 [SerializeField] GameObject ;

 [SerializeField] bool ;

class Spring MonoBehaviour

//This script is used to create the Spring Mechanics.

//Springs can either increase the Atari player's height, or have the Mega Man player's pollen bounce off it.

//This stores the Decal Player that the Spring will effect

//This stores the regular jump height of the decal player

//This stores the jump height that the player swaps to

//These GameObjects store the new starting and ending positions of the pollen shot by the Mega Man player when it hits the spring.

//This bool, when true, means that the pollen is bouncing along the Y-axis, rather then the X.

DM

RegularJump

SwapJump

NewEnd
NewStart

Up

126

The Start() function for the spring is used to store the default value of the Atari Player’s
jump into the Jumpheight float. When the Atari Player enters the script’s Trigger, their
jump height gets changed to that stored in SwapJump. The Jumpheight then turns

back to normal when exiting the trigger.

Spring - Script:
 ()

 {

 ()

 {

 RegularJump .Jumpheight;

 }

 }

 private (Collider other)

 {

 (other.gameObject.tag)

 {

 .Jumpheight SwapJump;

 }

 (other.gameObject.tag other.gameObject.tag)

 {

 other.gameObject. < >().MoveUp Up;

 (other.gameObject. < >().MoveRight)

 {

 :

 {

 other.gameObject. < >().OriginMark NewStart;

 other.gameObject. < >().TargetMark NewEnd;

 }

 ;

 :

 {

 other.gameObject. < >().OriginMark NewEnd;

 other.gameObject. < >().TargetMark NewStart;

 }

 ;

 }

 }

 }

 private (Collider other)

 {

 (other.gameObject.tag)

 {

 .Jumpheight RegularJump;

 }

 }

void

if !=

=

void

if == && !=

=

if == || ==

=
switch

case

=
=

break
case

=
=

break

void

if == && !=

=

Start

OnTriggerEnter

GetComponent Pollen
GetComponent Pollen

GetComponent Pollen
GetComponent Pollen

GetComponent Pollen
GetComponent Pollen

OnTriggerExit

//In the Start() function this script stores the value of the player's regular jump height.

//If the player triggers with the spring then their jump height increases

//If the pollen hits the spring, then the script changes the position that the pollen moves
between

//This depends on the direction the pollen is moving between.

//When the player exits the Trigger their jump height returns to normal.

DM null

DM

DM null

DM

true

false

DM null

DM

"Player"

"Pollen" "EvilPollen"

"Player"

127

If the pollen bullet enters the trigger of the spring, then the positions that the pollen is
moving towards gets changed. The means at which teh pollen changes depends on the

direction the bullet was shot from. This function also sets the value of the Pollen
script’s MoveUp bool to be that of this script’s Up bool.

Figure 8 - Segment 7, Mega Man Intro

Switch3D:
A mechanic established in this seventh segment are switches found within the 3D

world, which were initially designed to open 3D gates in the scene, but later got
updated to also be able to open 2D gates. These switches can be hit by 3D rocks and
pollen, as well as the 2D pollen shot by the Mega Man player, which is the main goal of

the first Mega Man section found in this segment.

public :
{

 [SerializeField] Animator ;

 [SerializeField] Material ;

 [SerializeField] bool ;

 [SerializeField] bool ;

class Switch3D MonoBehaviour

//This stores the animator of the Gates in the 3D space

//This stores the material that the switch changes to when its been hit.

//This tracks whether the switch has been hit

//This bool tracks whether the switch is used to open a 3D or 2D gate.

GateAnim

ActiveGate

BeenHit

Decal

Switch3D - Variables:

128

Switch3D - Script:

private ()

{

 (Decal BeenHit)

 {

 GateAnim. (,);

 }

}

private (Collider other)

{

 (other.gameObject.tag other.gameObject.tag)

 {

 (BeenHit)

 {

 ();

 }

 }

}

public ()

{

 BeenHit ;

 (Decal)

 {

 :

 {

 GateAnim. (,);

 }

 ;

 :

 {

 GateAnim. (,);

 }

 ;

 }

 gameObject. < >().material ActiveGate;

}

//The update function checks to see if the button is used to keep the 2D Gate open

//When being hit by the 2D pollen, this script calls the HitSwitch() function.

//The HitSwitch() function is used to open a gate in either the 3D of 2D space, dependent of the value of decal.

//When a 3D switch is hit, the material of the switch changes to a green.

void

if == && ==

void

if == || ==

if ==

void

=
switch

case

break
case

break

=

Update

SetBool

OnTriggerEnter

HitSwitch

HitSwitch

SetBool

SetBool

GetComponent MeshRenderer

true true

true

false

true

false

true

true

true

"Button"

"Pollen" "EvilPollen"

"Opengate"

"Button"

The Switch3D script is used to trigger the HitSwitch() function, either in this script
when a 2D pollen bullet collides with it, or by being called in the script used for the 3D

rock and 3D pollen, which calls this function. When hit, the HitSwitch() function will
open either a 3D or 2D gate, based on the value of the decal bool. The Update()

function is then used to keep the 2D gate open once hit, as without this the gate would
reset after the player leaves the 2D area, so this fixed that issue.

The plantgrow script is used for the Vine obstacles that the player needs to hit with
their pollen bullets in Mega Man sections. This script works for the regular vines, which
grow when shot with normal pollen, and thorny vines which shrivel when shot with evil

pollen. Originally this script had the vines change by swapping two objects out for each
other, but this led to issues with collision detection, so instead, I made it so the collision

and sprites of the specific vine swap, rather then swapping objects.

plantgrow:

129

plantgrow - Variables:

The variables used for this mechanic are as follows:

Plants (Material) - This variable stores the decal material that the decal projector
swaps with when hit by the trigger.

BoxSize and BoxCenter (Vector3) - These Vector3 variables store the size and centre
positions that the vine’s box collider swaps to when hit.

DP (DecalProjector) - This variable stores the projector used to show the vine.

BC (BoxCollider) - This stores the vine’s BoxCollider component.

Scale and Pos (Vector3) - These Vector 3 variables store the scale and position of the
vine when shot by the pollen bullets.

Spikes (bool) - This bool determines whether the vine type is a regular one needing to
be grown, or a spikey one needing to be shrunk.

Spring (bool) - This bool is set to true after the regular vine’s grow.

public :
{

 [SerializeField] Material ;

 [SerializeField] Vector3 ;

 [SerializeField] Vector3 ;

 [SerializeField] DecalProjector ;

 [SerializeField] BoxCollider ;

 [SerializeField] Vector3 ;

 [SerializeField] Vector3 ;

 [SerializeField] bool ;

 bool ;

class

public

plantgrow MonoBehaviour

//This script is used for 2D vines that can be grown by the Mega Man Player's 2D pollen bullets.

//This also has an alternative for the vines that block the path that can be shrunk by EvilPollen

//This stores the decal material for the grown vine.

//These Vector3s store the size and center of the vine's box collider after it is shot.

//This stores the DecalProjector used for the 2D vine.

//This stores the 2D vine's box collider.

//These Vector3s store the position and scale that the 2D vine should swap to.

//This bool when ticked, means that the vine should be shrunk by the player's evil pollen.

//This bool is set true after the regular vine is grown.

Plants

BoxSize
BoxCenter

DP

BC

Scale
Pos

Spikes

Spring

130

plantgrow - Script:
 private (Collision collision)

 {

 (collision.gameObject.tag)

 {

 (collision.gameObject);

 (Spikes)

 {

 .material Plants;

 .center BoxCenter;

 .size BoxSize;

 gameObject.transform.localPosition Pos;

 gameObject.transform.localScale Scale;

 Spring ;

 }

 }

 (collision.gameObject.tag)

 {

 (collision.gameObject);

 (Spikes)

 {

 .material Plants;

 .center BoxCenter;

 .size BoxSize;

 gameObject.transform.localPosition Pos;

 gameObject.transform.localScale Scale;

 }

 }

 }

void

if ==

if ==

=
=

=

=
=

=

else if ==

if ==

=
=

=

=
=

OnCollisionEnter

Destroy

Destroy

"Pollen"

"EvilPollen"

false

DP
BC
BC

true

true

DP
BC
BC

The only function within plantgrow is the OnCollisionEnter() function. This function
checks to see if either the pollen or evil pollen bullets have collided with the vine. If the

regular pollen shoots the non-spike vines, then the pollen is destroyed and the vine
grows to be taller, and allow the player to move through the vine and walk on the top.
The opposite is done when the spikey vines are shot by evil pollen, the vine will shrink

and the collider will move away so that the player is no longer blocked by the vine.

The spikevine script was originally programmed to delete the spike vines when the evil
pollen collides with them, and was the original one to achieve this purpose, before this

was incorporated within plantgrow. This script had to be removed, as deleting the
vines, rather then adjusting their collision, causes glitches in the player’s collision

detection, and it was not worth keeping the script. Below is the code for this script,
which is quite short, and doesn’t really need any explanation past what I have already

said.

spikevine:

131

 public :
{

 ()

 {

 (collision.gameObject.tag)

 {

 (collision.gameObject);

 (gameObject);

 }

 (collision.gameObject.tag)

 {

 (collision.gameObject);

 }

 }

}

class

private void

if ==

else if ==

spikevine MonoBehaviour

OnCollisionEnter

Destroy
Destroy

Destroy

//This script was orignally used to delete the spike vines after being hit by pollen

//This had to be removed as deleting the object caused issues with the collision

detection.

Collision collision

"EvilPollen"

"Pollen"

PollinUI:
As this area introduces the 2D Mega Man player, this also introduced UI for the player
to make the gameplay easier to understand. This UI works to swap between two sprites
of the different pollen types the Mega Man Player can shoot with. This was a quite
simple script that worked well to present the player what pollen type they are using.

The Pollen UI script only has two variables, being:

MMM (Mega_Man_Movement) - This variable is used to store the
Mega_Man_Movement script of the areas Mega Man player.

PollenImage[] (GameObject) - This array of GameObjects stores the different UI
Image’s that appear on the canvas.

The rest of the script takes place in the Update() function, which simply sets the state
of the UI Images based on the value of MMM’s pollenbad variable, with the regular
pollen appearing when it is false, and the evil pollen appearing when it is true. This

works well to create UI that clearly shows the pollen type that the player can shoot, and
helps to make the gameplay for the Mega Man player feeling more refined.

PollinUI - Script:
public :
{

 Mega_Man_Movement ;

 [SerializeField] GameObject[] ;

 ()

 {

 PollenImage[]. (.pollenbad);

 PollenImage[]. (.pollenbad);

 }

}

class

public

void

!

PollenUI MonoBehaviour

Update

SetActive
SetActive

//This script is used to program UI that shows what type of pollen the Mega Man Player is shooting

//It is quite simple, activating the UI images based on the value of the Mega Man player's pollenbad bool.

MMM

PollenImage

0 MMM
1 MMM

132

Segment 8 and 9 - Flower Gun Puzzle
and Spring Vine Puzzle:

This script was created to have the springs change position based on the size of the
vine, though turned out to obsolete within the game, as the purpose was already

completed with the Vine script, which was much more efficient and simple. This will
show the code for this unused script, and explain the code of it, even if it doesn’t end

up being used.

Figure 9 - Segment 8

SwapSprings:

The eight segment of the game houses two 2D platforming sections, both introducing
new elements accessed via the 3D flower gun ability. These puzzles are short and

simple require the player needing to shoot vines with their 3D pollen to change the size
of the pollen. The first of the 2D sections is a redo of the second segment, with the

player increasing the size of the vines using the pollen rather then placing them down
as inventory items. The second is a puzzle with springs that change positions based on
the size of the vines grown. These springs ended up using the Vines script made for the

inventory items, but before that there was a script made for it called SwapSprings,
which ended up being obsolete. Segment 8 is followed by Segment 9, which has a

larger version of the vine and spring puzzle, which is very large and complicated, and
required a 3D moving platform to fully see.

133

SwapSprings - Script:
public :
{

 [SerializeField] GameObject[] ;

 [SerializeField] plantgrow ;

 ()

 {

 (.Spring)

 {

 :

 {

 Springs[]. ();

 Springs[]. ();

 }

 ;

 :

 {

 Springs[]. ();

 Springs[]. ();

 }

 ;

 }

 }

}

class

private void

switch

case

break
case

break

SwapSprings MonoBehaviour

Update

SetActive
SetActive

SetActive
SetActive

//This script was the orignal way I aimed to swap springs based on the size of the 3D vines

 before I realised I could just use the Vines script made for the inventory puzzle.

//Because of this, this script ended up being unused.

//The Update() function activates and deactivates springs based on the size of the vine.

Springs
PG

PG

false

0 true
1 false

true

1 true
0 false

The idea of this script was to check the size of the grown plant, and then change the
position of the spring. Another fun fact is that originally I planned to use the plantgrow

script for the 3D vines, before I decided to just use the teleportplant script instead.

Figure 10 - Segment 9

134

FPSTrigger:
The FPSTrigger script is attached to a trigger collision parented to the First Person

Player, and is there to parent the player to the 3D moving platforms where applicable.
Since this was first needed in the ninth area, I decided to explain the code here. The

system is very simple, so I will explain it all in one go.

This script only has one variable, which is as follows:

Player (GameObject) - This stores the First Person Player character’s gameObject.

The Player variable gets parented to the moving platform when the trigger collides with
the 3D Moving Platforms. The trigger then removes this parenting when the player exits

the moving platform, and it no longer collides with the trigger.

FPSTrigger - Script:
public :
{

 [SerializeField] GameObject ;

 ()

 {

 (other.gameObject.tag)

 {

 Player.transform.parent other.gameObject.transform;

 }

 }

 ()

 {

 (other.gameObject.tag)

 {

 Player.transform.parent ;

 }

 }

}

class

private void

if ==

=

private void

if ==

=

FPSTrigger MonoBehaviour

OnTriggerEnter

OnTriggerExit

//This script is attached to the FPS Player, and works to parent them to moving platforms when they are
standing on them.

Player

Collider other

Collider other

"MoveFloor"

"MoveFloor"

null

135

Segement 10 - Final Segment:

This script is the final big mechanic made for the game, and is a trigger, which when
collided with, swaps the 2D player type from Atari to Mega Man, and vice versa. This
was done using triggers on either side of a decal, which when entered activate the

opposite gameplay type onto the other side of the decal. This works to easily teleport
the player to either side of the decal, and made the mechanic work very efficiently.

The 10th segment of the game serves as the final one, and is a big finale to the game,
incorporating every mechanic previously established, from the Inventory system to 3D
buttons and the rock hit ability. To properly incorporate everything however, I needed

to create a new system, I needed to create a means for the player to swap between 2D
gameplay styles on the fly, so that every mechanic could be properly incorporated.

Figure 11 - Final Segment

SwapCharacter:

136

This script has three array objects that store the values for the swap. In the arrays, the
0 value is always that of the Atari player’s values, and the 1 value is the Mega Man

Player. The array Variables are as follows:

Character[] (GameObject) - This array stores the actual GameObjects for the two
player characters.

Position[] (Vector3) - This array stores the positions the Player characters get placed
in after swapping.

Normal[] (Vector3) - This array stores the Normals that the different Player characters
could get spawned at.

SwapCharacter - Variables:

SwapCharacter - OnTriggerEnter():

public :
{

 [SerializeField] GameObject[] ;

 [SerializeField] Vector3[] ;

 [SerializeField] Vector3[] ;

class SwapCharacter MonoBehaviour

//This script is used in the final segment of the game to have the player swap between the 2D gameplay styles

 on the fly.

//This array stores the different gameplay characters

//This stores the position that the different player types will spawn at when swapping

//This stores the normal of the different player types after swapping.

Character

Position

Normal

 private (Collider other)

 {

 (other.gameObject Character[])

 {

 Character[]. ();

 Character[]. ();

 Character[]. < >().OriginMark
Character[]. < >().OriginMark;

 Character[]. < >().TargetMark
Character[]. < >().TargetMark;

 Character[].transform.position Position[];

 Character[].transform.forward Normal[];

 }

 (other.gameObject Character[])

 {

 Character[]. ();

 Character[]. ();

 Character[]. < >().OriginMark
Character[]. < >().OriginMark;

 Character[]. < >().TargetMark
Character[]. < >().TargetMark;

 Character[].transform.position Position[];

 Character[].transform.forward Normal[];

 }

 }

//When entering a trigger the script will swap the player character over to the opposite player

//When the Atari Player enters the trigger, it will swap to the Mega Man player.

//When swapping the script automatically updates the positions the player character will be moving
between, so they don't glitch.

//When the Mega Man Player enters the trigger, they will swap to the Atari Player.

void

if ==

=

=

=

=

else if ==

=

=

=

=

OnTriggerEnter

SetActive
SetActive

GetComponent Mega_Man_Movement
GetComponent DecalMovement

GetComponent Mega_Man_Movement
GetComponent DecalMovement

SetActive
SetActive
GetComponent DecalMovement

GetComponent Mega_Man_Movement
GetComponent DecalMovement

GetComponent Mega_Man_Movement

0

0 false
1 true

1

0

1

0

1 1

1 1

1

1 false
0 true
0

1

0

1

0 0

0 0

The only function used for this script is an OnTriggerEnter() function. This function
checks whether it is the Atari or Mega Man player that collides with the player

character, and swaps the character to the other side of the portal based on this. In
addition, the script updates the OriginMark and TargetMark variables to fit the area it

swapped to, so that the character can properly move on the wall without glitching. This
worked well and made the mechanic work well. With that, all my central mechanics in

the game were programmed, and with that, my game is complete. Thank you for
reading threw all my scripts, I hope you didn’t die of boredom.

